1
|
Antenozio ML, Capobianco G, Allevato E, Marabottini R, Stazi SR, Bonifazi G, Serranti S, Brunetti P, Cardarelli M. New evidence of the timing of arsenic accumulation and expression of arsenic-response genes in field-grown Pteris vittata plants under different arsenic concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124873. [PMID: 39218199 DOI: 10.1016/j.envpol.2024.124873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The timing and efficiency of arsenic (As) accumulation is crucial for using the hyperaccumulator P. vittata in remediation of As-contaminated soils. In this study, through an innovative microXRF-based approach, using a new "pinna powder" sampling method, we monitored As accumulation over time in fronds of individual P. vittata plants grown in the greenhouse and in the field on two natural soils, with high (750 mg/kg) and moderate (58.4 mg/kg) As concentrations. Results, validated by multivariant statistical analysis show that the peak of As occurs on both soils at 45/60 days and at 100/120 days in greenhouse and field grown plants, respectively. Furthermore, in field trials, the timing of As accumulation in both soils was similar during the first autumn-winter and the second spring-summer phytoextraction cycle. After the two cycles, soil As content was reduced by 70.4% in the high-As soil and 26.4% in the moderate one. Moreover, candidate genes involved in As hyperaccumulation -the arsenite antiporter PvACR3, the As (V)-reductases Pv2.5-8 and the organic cation transporter PvOCT4- are expressed in response to As in field-grown plants with similar kinetics in both soils. In conclusion, we established by this innovative technique, the timing of maximum As accumulation that is linked to the intrinsic hyperaccumulation mechanism and represents a highly powerful tool to set up the duration of phytoextraction cycles.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo (Roma), Italy; IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| | - Giuseppe Capobianco
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121, Ferrara, Italy.
| | - Rosita Marabottini
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy.
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121, Ferrara, Italy.
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18 - 00184, Rome, Italy.
| | - Patrizia Brunetti
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), via Salaria km 29.300, 00015 Monterotondo Scalo (Roma), Italy; IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| | - Maura Cardarelli
- IBPM-CNR C/o Dip. di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185, Roma, Italy.
| |
Collapse
|
2
|
Zeng W, Wan X, Lei M, Chen T. Intercropping of Pteris vittata and maize on multimetal contaminated soil can achieve remediation and safe agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170074. [PMID: 38218467 DOI: 10.1016/j.scitotenv.2024.170074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Soil contamination by multimetals is widespread. Hyperaccumulator-crop intercropping has been confirmed to be an effective method for arsenic (As)- or cadmium (Cd)-contaminated soil that can achieve soil cleanup and agricultural production. However, the influencing factors and response of hyperaccumulator-crop intercropping to multimetal-contaminated soil are still unclear. In this study, intercropping of the As hyperaccumulator Pteris vittata and maize was conducted on two typical types of multimetal-contaminated soil, namely, Soil A contaminated by As, Cd, and lead (Pb) and Soil B contaminated by As, Cd, and chromium (Cr). Intercropping reduced As, Cd, and Pb in the maize grains by 60 %, 66.7 %, and 20.4 %, respectively. The concentrations of As, Cd, Pb, and Cr in P. vittata increased by 314 %, 300 %, 447.3 %, and 232.6 %, respectively, relative to their concentrations in the monoculture plants. Two soils with different levels of contamination showed that higher heavy metal content might diminish the ability of intercropping to reduce soil heavy metal risk. No notable difference in soil microbial diversity was found between the intercropped and monocultured plants. The composition of microbial communities of intercropping groups were more similar to those of monoculture P. vittata on two different soils (Soils A and B). An imbalance between the amount of As taken up by the plants and the reduction in As in the soil was observed, and this imbalance may be related to watering, As leaching, and heterogeneity of soil As distribution. Reducing the risk resulting from As leaching and enhancing the efficiency of phytoextraction should be emphasized in remediation practices.
Collapse
Affiliation(s)
- Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100089, China
| |
Collapse
|
3
|
Wan X, Zeng W, Zhang D, Wang L, Lei M, Chen T. Changes in the concentration, distribution, and speciation of arsenic in the hyperaccumulator Pteris vittata at different growth stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156708. [PMID: 35718183 DOI: 10.1016/j.scitotenv.2022.156708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The arsenic (As) hyperaccumulator has become a model plant for the study of the interaction between plants and trace elements. However, the change in As concentration, distribution and speciation of hyperaccumulator Pteris vittata at different growth stages, especially with the aging process remains unknown. We collected P. vittata at different growth ages and analyzed As concentration, distribution, and speciation. Furthermore, metabolic profiling was conducted for P. vittata at different growth stages. With aging, the reduced glutathione/ oxidized glutathione ratio decreased while the malondialdehyde content increased, accompanied by the change in the main As speciation in P. vittata from arsenite to arsenate. Metabolic profiling also indicated significant difference in the compositions of metabolites during different growth stages. Specifically, flavonoid compounds were found to be positively correlated with As concentration. Results indicated that with the aging of P. vittata, the redox potential increased in the pinnae, leading to the oxidation of As, which may have impacted the distribution of As in this fern. Furthermore, the correlation between As concentration and flavonoid compounds implied the essential role of flavonoid metabolism in the accumulation and transport of As in this plant.
Collapse
Affiliation(s)
- Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weibin Zeng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Degang Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Honghe University, Mengzi 661199, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Matzen SL, Olson AL, Pallud CE. Soil texture and climate limit cultivation of the arsenic hyperaccumulator Pteris vittata for phytoextraction in a long-term field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129151. [PMID: 35739697 DOI: 10.1016/j.jhazmat.2022.129151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Long term field studies are required to bridge gaps between research and practical application of arsenic phytoextraction with the arsenic-hyperaccumulating fern Pteris vittata. In a 4-year field study, we investigated the effects of nutrient application (compost, inorganic or organic nitrogen, inorganic or organic phosphorus) and soil texture (13 % and 35 % clay) on arsenic phytoextraction with P. vittata in moderately contaminated soils (74-79 mg As/kg in the 0-15 cm depth interval). We found the highest phytoextraction rates, 5 ± 1 kg As/ha/y, in a coarse-textured compost-amended soil after 2 years of phytoextraction. Phytoextraction rates decreased over time, likely due to decreased root growth in mature stands, indicating plants should be replaced every 2-3 years to maintain phytoextraction efficiency. Across soil textures, nitrogen or phosphorus application led to a 60 % decrease in mean frond arsenic concentrations, leading to mean phytoextraction rates 54 % lower than in control ferns. In the fine-textured soil, frond arsenic concentrations were 54 % lower than in the coarse-textured soil, and fewer ferns survived from year 3 to 4. Across soil textures, compost application increased fern survival. We show that phytoextraction with P. vittata is limited to specific soil and climate conditions, narrower than those under which P. vittata grows in the wild.
Collapse
Affiliation(s)
- S L Matzen
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - A L Olson
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - C E Pallud
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Kohda YHT, Endo G, Kitajima N, Sugawara K, Chien MF, Inoue C, Miyauchi K. Arsenic uptake by Pteris vittata in a subarctic arsenic-contaminated agricultural field in Japan: An 8-year study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154830. [PMID: 35346712 DOI: 10.1016/j.scitotenv.2022.154830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, the phytoremediation potential of tropical and subtropical arsenic (As) hyperaccumulating fern Pteris vittata in an As contaminated farmland field near an abandoned goldmine was investigated. The tested field is located in a subarctic area of northeast Japan. This study was aimed at decreasing the risk of As in the soil (water-soluble As) with nurturing the soil and respecting the plant life cycle for the sustainable phytoremediation for 8 years. The field was tilled and planted with new seedlings of the fern every spring and the grown fern was harvested every autumn. The biomass and As concentration in fronds, rhizomes and roots of the fern were analyzed separately after harvesting each year. The biomass of the fronds of P. vittata was significantly affected by the yearly change of the weather condition, but As concentration in fronds was kept at 100-150 mg/kg dry weight. The accumulated As in P. vittata was higher than that of As-hyperaccumulator fern Pteris cretica, the native fern in the field trial area. Harvested biomass of P. vittata per plant was also higher than that of P. cretica. More than 43.5 g As/154 m2 (convertible to 2.82 kg of As per hectare) was removed from the farmland field by P. vittata phytoremediation at the end of the 8-year experiment. Because of the short-term plant growth period and soil tilling process, total As in soil did not show significant depletion. However, the water-soluble As in the surface and deeper soil, which is phytoavailable and easily taken in cultivated plants, decreased to 10 μg/L (Japan Environmental Quality Standard for water-soluble As in soil) by the 8-year phytoremediation using P. vittata. These research data elucidate that the tropical and subtropical As hyperaccumulating fern, P. vittata, is applicable for As phytoremediation in the subarctic climate area.
Collapse
Affiliation(s)
- Yi Huang-Takeshi Kohda
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan; Research Institute for Engineering and Technology, Tohoku Gakuin University, Tagajo, Japan.
| | - Ginro Endo
- Research Institute for Engineering and Technology, Tohoku Gakuin University, Tagajo, Japan
| | | | - Kazuki Sugawara
- Faculty of Science and Technology, Seikei University, Tokyo, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai, Japan
| | - Keisuke Miyauchi
- Research Institute for Engineering and Technology, Tohoku Gakuin University, Tagajo, Japan; Department of Civil and Environmental Engineering, Faculty of Engineering, Tohoku Gakuin University, Tagajo, Japan.
| |
Collapse
|
6
|
Matzen SL, Lobo GP, Fakra SC, Kakouridis A, Nico PS, Pallud CE. Arsenic hyperaccumulator Pteris vittata shows reduced biomass in soils with high arsenic and low nutrient availability, leading to increased arsenic leaching from soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151803. [PMID: 34808151 DOI: 10.1016/j.scitotenv.2021.151803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Plant-soil interactions affect arsenic and nutrient availability in arsenic-contaminated soils, with implications for arsenic uptake and tolerance in plants, and leaching from soil. In 22-week column experiments, we grew the arsenic hyperaccumulating fern Pteris vittata in a coarse- and a medium-textured soil to determine the effects of phosphorus fertilization and mycorrhizal fungi inoculation on P. vittata arsenic uptake and arsenic leaching. We investigated soil arsenic speciation using synchrotron-based spectromicroscopy. Greater soil arsenic availability and lower nutrient content in the coarse-textured soil were associated with greater fern arsenic uptake, lower biomass (apparently a metabolic cost of tolerance), and arsenic leaching from soil, due to lower transpiration. P. vittata hyperaccumulated arsenic from coarse- but not medium-textured soil. Mass of plant-accumulated arsenic was 1.2 to 2.4 times greater, but aboveground biomass was 74% smaller, in ferns growing in coarse-textured soil. In the presence of ferns, mean arsenic loss by leaching was 195% greater from coarse- compared to the medium-textured soil, and lower across both soils compared to the absence of ferns. In the medium-textured soil arsenic concentrations in leachate were higher in the presence of ferns. Fern arsenic uptake was always greater than loss by leaching. Most arsenic (>66%) accumulated in P. vittata appeared of rhizosphere origin. In the medium-textured soil with more clay and higher nutrient content, successful iron scavenging increased arsenic release from soil for leaching, but transpiration curtailed leaching.
Collapse
Affiliation(s)
- S L Matzen
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - G P Lobo
- Civil and Environmental Engineering, University of California-Berkeley, 410 O'Brien Hall, Berkeley, CA 94720, USA
| | - S C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - A Kakouridis
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA
| | - P S Nico
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C E Pallud
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, 130 Mulford Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
7
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
8
|
Phytoextraction of Heavy Metals by Various Vegetable Crops Cultivated on Different Textured Soils Irrigated with City Wastewater. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5020035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A challenging task in urban or suburban agriculture is the sustainability of soil health when utilizing city wastewater, or its dilutes, for growing crops. A two-year field experiment was conducted to evaluate the comparative vegetable transfer factors (VTF) for four effluent-irrigated vegetable crops (brinjal, spinach, cauliflower, and lettuce) grown on six study sites (1 acre each), equally divided into two soil textures (sandy loam and clay loam). Comparisons of the VTF factors showed spinach was a significant and the best phytoextractant, having the highest heavy metal values (Zn = 20.2, Cu = 12.3, Fe = 17.1, Mn = 30.3, Cd = 6.1, Cr = 7.6, Ni = 9.2, and Pb = 6.9), followed by cauliflower and brinjal, while lettuce extracted the lowest heavy metal contents (VTF: lettuce: Zn = 8.9, Cu = 4.2, Fe = 9.6, Mn = 6.6, Cd = 4.7, Cr = 2.9, Ni = 5.5, and Pb = 2.5) in response to the main (site and vegetable) or interactive (site * vegetable) effects. We suggest that, while vegetables irrigated with sewage water may extract toxic heavy metals and remediate soil, seriously hazardous/toxic contents in the vegetables may be a significant source of soil and environmental pollution.
Collapse
|