1
|
Belinchón-deMiguel P, Navarro-Jiménez E, Laborde-Cárdenas CC, Clemente-Suárez VJ. Evolutionary Echoes: A Four-Day Fasting and Low-Caloric Intake Study on Autonomic Modulation and Physiological Adaptations in Humans. Life (Basel) 2024; 14:456. [PMID: 38672727 PMCID: PMC11051148 DOI: 10.3390/life14040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluates the psychophysiological response to a simulated hunter-gatherer endurance task with restricted caloric intake over four days. It assesses changes in body composition, autonomic modulation, and physical and cognitive performance. Participants underwent daily 8 h fasted walks followed by a 150 kcal meal to replicate hunter-gatherer activity and dietary patterns. Measurements of metabolic, respiratory, and subjective well-being, along with heart rate variability (HRV) monitoring, were conducted pre- and post-activity to evaluate the impact of endurance activity under caloric restriction. We found weight loss, decreased body and visceral fat, and reduced skeletal muscle mass and water percentage. High sympathetic activation and stable urinary markers, except for increased proteinuria, indicated stress responses and muscular degradation. Elevated perceived exertion post-exercise with good adaptation to prolonged effort underlines the body's adaptability to ancestral lifestyle conditions, highlighting the connection among endurance, nutrition, and psychophysiological health.
Collapse
Affiliation(s)
- Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Sport Sciences and Physiotherapy, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | - Eduardo Navarro-Jiménez
- Grupo de Investigacion en Microbiología y Biotecnología (IMB), Universidad Libre, Barranquilla 080003, Colombia;
| | | | - Vicente Javier Clemente-Suárez
- Department of Nursing, Faculty of Sport Sciences and Physiotherapy, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| |
Collapse
|
2
|
Berger NJA, Best R, Best AW, Lane AM, Millet GY, Barwood M, Marcora S, Wilson P, Bearden S. Limits of Ultra: Towards an Interdisciplinary Understanding of Ultra-Endurance Running Performance. Sports Med 2024; 54:73-93. [PMID: 37751076 DOI: 10.1007/s40279-023-01936-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
Ultra-endurance running (UER) poses extreme mental and physical challenges that present many barriers to completion, let alone performance. Despite these challenges, participation in UER events continues to increase. With the relative paucity of research into UER training and racing compared with traditional endurance running distance (e.g., marathon), it follows that there are sizable improvements still to be made in UER if the limitations of the sport are sufficiently understood. The purpose of this review is to summarise our current understanding of the major limitations in UER. We begin with an evolutionary perspective that provides the critical background for understanding how our capacities, abilities and limitations have come to be. Although we show that humans display evolutionary adaptations that may bestow an advantage for covering large distances on a daily basis, these often far exceed the levels of our ancestors, which exposes relative limitations. From that framework, we explore the physiological and psychological systems required for running UER events. In each system, the factors that limit performance are highlighted and some guidance for practitioners and future research are shared. Examined systems include thermoregulation, oxygen delivery and utilisation, running economy and biomechanics, fatigue, the digestive system, nutritional and psychological strategies. We show that minimising the cost of running, damage to lower limb tissue and muscle fatigability may become crucial in UER events. Maintaining a sustainable core body temperature is critical to performance, and an even pacing strategy, strategic heat acclimation and individually calculated hydration all contribute to sustained performance. Gastrointestinal issues affect almost every UER participant and can be due to a variety of factors. We present nutritional strategies for different event lengths and types, such as personalised and evidence-based approaches for varying types of carbohydrate, protein and fat intake in fluid or solid form, and how to avoid flavour fatigue. Psychology plays a vital role in UER performance, and we highlight the need to be able to cope with complex situations, and that specific long and short-term goal setting improves performance. Fatigue in UER is multi-factorial, both physical and mental, and the perceived effort or level of fatigue have a major impact on the ability to continue at a given pace. Understanding the complex interplay of these limitations will help prepare UER competitors for the different scenarios they are likely to face. Therefore, this review takes an interdisciplinary approach to synthesising and illuminating limitations in UER performance to assist practitioners and scientists in making informed decisions in practice and applicable research.
Collapse
Affiliation(s)
- Nicolas J A Berger
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
| | - Russ Best
- Centre for Sport Science and Human Performance, Wintec, Hamilton, New Zealand
| | - Andrew W Best
- Department of Biology, Massachusetts College of Liberal Arts, North Adams, MA, USA
| | - Andrew M Lane
- Faculty of Education Health and Wellbeing, University of Wolverhampton, Walsall, UK
| | - Guillaume Y Millet
- Univ Lyon, UJM Saint-Etienne, Inter-University Laboratory of Human Movement Biology, Saint Etienne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Martin Barwood
- Department of Sport, Health and Nutrition, Leeds Trinity University Horsforth, Leeds, UK
| | - Samuele Marcora
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrick Wilson
- Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Shawn Bearden
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| |
Collapse
|
3
|
Weich C, Schüler J, Wolff W. 24 Hours on the Run-Does Boredom Matter for Ultra-Endurance Athletes' Crises? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6859. [PMID: 35682442 PMCID: PMC9180276 DOI: 10.3390/ijerph19116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023]
Abstract
Sport and exercise can be boring. In the general population, thinking of sports as boring has been linked to exercising less. However, less is known about the role of boredom in people who participate in ultra-endurance competitions: Do these athletes also associate their sports with boredom, and does boredom pose a self-regulatory challenge that predicts if they encounter a crisis during an ultra-endurance competition? Here, we investigate these questions with a sample of N = 113 (n = 34 female) competitors of a 24 h hour running competition, aged M = 37.6 ± 13.8 years. In this study, n = 23 very extreme athletes competed as single starters or in a relay team of 2, and n = 84 less extreme athletes competed in relay teams of 4 or 6. Before the run, athletes completed self-report measures on sport-specific trait boredom, as well as the degree to which they expected boredom, pain, effort, and willpower to constitute self-regulatory challenges they would have to cope with. After the run, athletes reported the degree to which they actually had to deal with these self-regulatory challenges and if they had faced an action crisis during the competition. Analyses revealed that very extreme athletes displayed a significantly lower sport-specific trait boredom than less extreme athletes (p = 0.024, d=-0.48). With respect to self-regulatory challenges, willpower, pain, and effort were expected and reported at a much higher rate than boredom. However, only boredom was as a significant predictor of experiencing a crisis during the competition (odds ratio = 12.5, p = 0.02). Our results show that boredom also matters for highly active athletes. The fact that the experience of boredom-and not more prototypical competition-induced challenges, such as pain or effort-were linked to having an action crisis highlights the relevance of incorporating boredom into the preparation for a race and to the performance management during competition.
Collapse
Affiliation(s)
- Christian Weich
- Department of Sport Science, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz, Germany; (J.S.); (W.W.)
| | - Julia Schüler
- Department of Sport Science, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz, Germany; (J.S.); (W.W.)
| | - Wanja Wolff
- Department of Sport Science, University of Konstanz, Universitaetsstrasse 10, 78464 Konstanz, Germany; (J.S.); (W.W.)
- Educational Psychology Lab, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| |
Collapse
|
4
|
Consistency Is Key When Setting a New World Record for Running 10 Marathons in 10 Days. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212066. [PMID: 34831820 PMCID: PMC8621928 DOI: 10.3390/ijerph182212066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Background: We describe the requirements and physiological changes when running 10 consecutive marathons in 10 days at the same consistent pace by a female ultra-endurance athlete. Methods: Sharon Gayter (SG) 54 yrs, 162.5 cm, 49.3 kg maximal oxygen uptake (VO2 max) 53 mL/kg−1/min−1. SG completed 42.195 km on a treadmill every day for 10 days. We measured heart rate (HR), Rating of Perceived Exertion (RPE), oxygen uptake (VO2), weight, body composition, blood parameters, nutrition, and hydration. Results: SG broke the previous record by ~2.5 h, with a cumulative completion time of 43 h 51 min 39 s. Over the 10 days, weight decreased from 51 kg to 48.4 kg, bodyfat mass from 9.1 kg to 7.2 kg (17.9% to 14.8%), and muscle mass from 23.2 kg to 22.8 kg. For all marathons combined, exercise intensity was ~60% VO2 max; VO2 1.6 ± 0.1 L.min−1/32.3 ± 1.1 mL.kg−1.min−1, RER 0.8 ± 0, HR 143 ± 4 b.min−1. Energy expenditure (EE) was 2030 ± 82 kcal/marathon, total EE for 10 days (including BMR) was 33,056 kcal, daily energy intake (EI) 2036 ± 418 kcal (20,356 kcal total), resulting an energy deficit (ED) of 12,700 kcal. Discussion: Performance and pacing were highly consistent across all 10 marathons without any substantial physiological decrements. Although overall EI did not match EE, leading to a significant ED, resulting in a 2.6 kg weight loss and decreases in bodyfat and skeletal muscle mass, this did not affect performance.
Collapse
|
5
|
Physiological Responses and Nutritional Intake during a 7-Day Treadmill Running World Record. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165962. [PMID: 32824531 PMCID: PMC7459626 DOI: 10.3390/ijerph17165962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022]
Abstract
Ultra-running comprises running events longer than a marathon (>42.2 km). The prolonged duration of ultra-running leads to decrements in most or all physiological parameters and considerable energy expenditure (EE) and energy deficits. SG, 47 years, 162.5 cm, 49 kg, VO2max 4 mL/kg/min−1/2.37 L/min−1, ran continuously for 7 days on a treadmill in 3 h blocks followed by 30 min breaks and slept from 1–5 a.m. Heart rate (HR) oxygen uptake (VO2), rating of perceived exertion, weight, blood lactate (mmol·L−1), haemoglobin (g·dL), haematocrit (%) and glucose (mmol·L−1), and nutrition and hydration were recorded. SG ran for 17.5 h/day, covering ~120 km/day at ~7 km/h. Energy expenditure for each 24 h period was 6878 kcal/day and energy intake (EI) was 2701 kcal/day. EE was 382 kcal/h, with 66.6% from fat and 33.4% from carbohydrate oxidation. 7 day EI was 26,989 kcal and EE was 48,147 kcal, with a total energy deficit (ED) of 21,158 kcal. Average VO2 was 1.2 L·min−1/24.7 mL·kg·min−1, Respriatory echange ratio (RER) 0.80 ± 0.03, HR 120–125 b·min−1. Weight increased from 48.6 to 49.5 kg. Haemoglobin decreased from 13.7 to 11 g·dL and haematocrit decreased from 40% to 33%. SG ran 833.05 km. SG exhibits an enhanced fat metabolism through which she had a large daily ED. Her success can be attributed to a combination of physiological and psychological factors.
Collapse
|
6
|
Abstract
Taste is a homeostatic function that conveys valuable information, such as energy density, readiness to eat, or toxicity of foodstuffs. Taste is not limited to the oral cavity but affects multiple physiological systems. In this review, we outline the ergogenic potential of substances that impart bitter, sweet, hot and cold tastes administered prior to and during exercise performance and whether the ergogenic benefits of taste are attributable to the placebo effect. Carbohydrate mouth rinsing seemingly improves endurance performance, along with a potentially ergogenic effect of oral exposure to both bitter tastants and caffeine although subsequent ingestion of bitter mouth rinses is likely required to enhance performance. Hot and cold tastes may prove beneficial in circumstances where athletes' thermal state may be challenged. Efficacy is not limited to taste, but extends to the stimulation of targeted receptors in the oral cavity and throughout the digestive tract, relaying signals pertaining to energy availability and temperature to appropriate neural centres. Dose, frequency and timing of tastant application likely require personalisation to be most effective, and can be enhanced or confounded by factors that relate to the placebo effect, highlighting taste as a critical factor in designing and administering applied sports science interventions.
Collapse
|
7
|
Self-Selected Pacing during a 24 h Track Cycling World Record. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162943. [PMID: 31426293 PMCID: PMC6720958 DOI: 10.3390/ijerph16162943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
The present case study analyzed the pacing in a self-paced world record attempt during a 24 h track cycling event by the current world record holder. The cyclist completed 3767 laps on a 250 m long cycling track and covered a total distance of 941.873 km, breaking the existing world record by 37.99 km. The average cycling speed was 39.2 ± 1.9 km/h (range 35.5–42.8 km/h) and the power output measured was 214.5 ± 23.7 W (range 190.0–266.0 W) during the 24 h of cycling. We found a positive pacing result with negative correlations between cycling speed (r = −0.73, p < 0.001), power output (r = −0.66, p < 0.001), and laps per hour (r = −0.73, p < 0.001) and the covered distance. During the 24 h, we could identify four different phases: the first phase lasting from the start till the fourth hour with a relatively stable speed; the second phase from the fourth till the ninth hour, characterized by the largest decrease in cycling speed; the third phase from the ninth hour till the 22nd hour, showing relatively small changes in cycling speed; and the last phase from the 22nd hour till the end, presenting a final end spurt. The performance in the 24 h track cycling was 45.577 km better than in the 24 h road cycling, where the same athlete cycled slower but with higher power output. In summary, the current world-best ultracyclist covered more kilometers with less power output during the world record 24 h track cycling than during his world record 24 h road cycling. This was most probably due to the more favorable environmental conditions in the velodrome, which has no wind and stable temperatures.
Collapse
|
8
|
Pacing and Changes in Body Composition in 48 h Ultra-Endurance Running-A Case Study. Sports (Basel) 2018; 6:sports6040136. [PMID: 30388759 PMCID: PMC6315888 DOI: 10.3390/sports6040136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Pacing has been investigated in elite and master runners competing in marathon and ultra-marathon races up to 100 km and 100 miles, but not in longer ultra-marathons. In this case study, a 54-year-old master ultra-marathoner—intending to achieve as many kilometers as possible in a 48 h run—was examined. The changes in running speed during the race and selected anthropometric characteristics using bioelectrical impedance analysis (i.e., body mass and body water), during and after the race, were analyzed. The runner achieved a total distance of 230 km and running speed decreased non-linearly during the race. Body mass decreased, while percent body water increased, non-linearly, across the race. There was no statistically significant relationship between the decrease in body mass and the increase in percent body water. Considering the popularity of ultra-endurance running races, the findings of the present study offered valuable insight in the pacing and changes of body mass and body water during a 48 h run, and this information can be used by ultra-endurance runners and practitioners working with them.
Collapse
|