1
|
Bıçakçı B, Cięszczyk P, Humińska-Lisowska K. Genetic Determinants of Endurance: A Narrative Review on Elite Athlete Status and Performance. Int J Mol Sci 2024; 25:13041. [PMID: 39684752 DOI: 10.3390/ijms252313041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
This narrative review explores the relationship between genetics and elite endurance athletes, summarizes the current literature, highlights some novel findings, and provides a physiological basis for understanding the mechanistic effects of genetics in sport. Key genetic markers include ACTN3 R577X (muscle fiber composition), ACE I/D (cardiovascular efficiency), and polymorphisms in PPARA, VEGFA, and ADRB2, influencing energy metabolism, angiogenesis, and cardiovascular function. This review underscores the benefits of a multi-omics approach to better understand the complex interactions between genetic polymorphisms and physiological traits. It also addresses long-standing issues such as small sample sizes in studies and the heterogeneity in heritability estimates influenced by factors like sex. Understanding the mechanistic relationship between genetics and endurance performance can lead to personalized training strategies, injury prevention, and improved health outcomes. Future studies should focus on standardized classification of sports, replication studies involving diverse populations, and establishing solid physiological associations between polymorphisms and endurance traits to advance the field of sports genetics.
Collapse
Affiliation(s)
- Barkın Bıçakçı
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| | - Kinga Humińska-Lisowska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdańsk, Poland
| |
Collapse
|
2
|
Hall ECR, John G, Ahmetov II. Testing in Football: A Narrative Review. Sports (Basel) 2024; 12:307. [PMID: 39590909 PMCID: PMC11598473 DOI: 10.3390/sports12110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Football clubs regularly test and monitor players, with different approaches reflecting player age and competitive level. This narrative review aims to summarise justifications for testing and commonly used testing protocols. We also aim to discuss the validity and reliability of specific tests used to assess football players and provide a holistic overview of protocols currently used in football or those demonstrating potential utility. The PubMed, SportDiscus, and Google Scholar databases were screened for relevant articles from inception to September 2024. Articles that met our inclusion criteria documented tests for several purposes, including talent identification or the assessment of growth/maturation, physiological capacity, sport-specific skill, health status, monitoring fatigue/recovery, training adaptation, and injury risk factors. We provide information on specific tests of anthropometry, physical capacity, biochemical markers, psychological indices, injury risk screening, sport-specific skills, and genetic profile and highlight where certain tests may require further evidence to support their use. The available evidence suggests that test selection and implementation are influenced by financial resources, coach perceptions, and playing schedules. The ability to conduct field-based testing at low cost and to test multiple players simultaneously appear to be key drivers of test development and implementation among practitioners working in elite football environments.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates;
| | - Ildus I. Ahmetov
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
| |
Collapse
|
3
|
Ferreira CP, Silvino VO, Trevisano RG, de Moura RC, Almeida SS, Pereira Dos Santos MA. Influence of genetic polymorphism on sports talent performance versus non-athletes: a systematic review and meta-analysis. BMC Sports Sci Med Rehabil 2024; 16:223. [PMID: 39482721 PMCID: PMC11529235 DOI: 10.1186/s13102-024-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/27/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Talented athletes exhibit remarkable skills and performance in their respective sports, setting them apart from their peers. It has been observed that genetic polymorphisms can influence variations in sports performance, leading to numerous studies aimed at validating genetic markers for identifying sports talents. This study aims to evaluate the potential contribution of genetic factors associated with athletic performance predisposition in identifying sports talents. METHODS A systematic review was conducted following the PRISMA framework, utilizing the PICO methodology to develop the research question. The search was limited to case-control studies published between 2003 and June 2024, and databases such as Medline, LILACS, WPRIM, IBECS, CUMED, VETINDEX, Web of Science, Science Direct, Scopus and Scielo were utilized. The STREGA tool was employed to assess the quality of the selected studies. RESULTS A total of 1,132 articles were initially identified, of which 119 studies were included in the review. Within these studies, 50 genes and 94 polymorphisms were identified, showing associations with sports talent characteristics such as endurance, strength, power, and speed. The most frequently mentioned genes were ACTN3 (27.0%) and ACE (11.3%). CONCLUSION The ACE I/D and ACTN3 R577X polymorphisms are frequently discussed in the literature. Although athletic performance may be influenced by different genetic polymorphisms, limitations exist in associating them with athletic performance across certain genotypes and phenotypes. Future research is suggested to investigate the influence of polymorphisms in elite athletes from diverse backgrounds and sports disciplines.
Collapse
Affiliation(s)
- Cirley Pinheiro Ferreira
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil.
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil.
| | - Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| | - Rebeca Gonçalves Trevisano
- Department of Obstetrician, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rayane Carvalho de Moura
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
| | - Sandro Soares Almeida
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
- Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Anhanguera College of Guarulhos, Guarulhos, SP, Brazil
| | - Marcos Antonio Pereira Dos Santos
- Department of Biophysics and Physiology, Nucleus of Study in Physiology Applied to Performance and Health, Federal University of Piauí, 685 Odilon Araújo Avenue, Piçarra, Teresina, PI, 64017-280, Brazil
- Northeast Biotechnology Network (RENORBIO) postgraduate program, Teresina, Brazil
| |
Collapse
|
4
|
Gasser B, Dössegger A, Giraud MN, Flück M. T-Allele Carriers of Mono Carboxylate Transporter One Gene Polymorphism rs1049434 Demonstrate Altered Substrate Metabolization during Exhaustive Exercise. Genes (Basel) 2024; 15:918. [PMID: 39062697 PMCID: PMC11275951 DOI: 10.3390/genes15070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Polymorphism rs1049434 characterizes the nonsynonymous exchange of adenosine (A) by thymidine (T) in the gene for monocarboxylate transporter 1 (MCT1). We tested whether T-allele carriers of rs1049434 demonstrate increased accumulation of markers of metabolic strain. METHODS Physically active, healthy, young male subjects (n = 22) conducted a power-matched one-legged cycling exercise to exhaustion. Metabolic substrates in capillary blood, selected metabolic compounds, and indices for the slow oxidative phenotype of vastus lateralis muscle were quantified in samples collected before and after exercise. The genotypes of the rs1049434 polymorphism were determined with polymerase chain reactions. RESULTS One-legged exercise affected the concentration of muscle metabolites entering the tricarboxylic acid cycle, such as acetyl-co-enzyme A (+448%) and acetyl-L-carnitine (+548%), muscle glycogen (-59%), and adenosine monophosphate (-39%), 30 min post-exercise. Exercise-related variability in the muscular concentration of glycogen, long-chain acyl co-enzyme As and a triglyceride, nicotinamide adenine dinucleotide (NADH), and adenosine monophosphate (AMP) interacted with rs1049434. T-allele carriers demonstrated a 39% lesser reduction in glycogen after exercise than non-carriers when NADH increased only in the non-carriers. Muscle lactate concentration was 150% higher, blood triacyl-glyceride concentration was 53% lower, and slow fiber percentage was 20% lower in T-allele carriers. DISCUSSION The observations suggest a higher anaerobic glycolytic strain during exhaustive exercise and a lowered lipid handling in T-allele non-carriers.
Collapse
Affiliation(s)
- Benedikt Gasser
- Department of Sport, Physical Activity and Health, University of Basel, 4001 Basel, Switzerland; (B.G.); (A.D.)
| | - Alain Dössegger
- Department of Sport, Physical Activity and Health, University of Basel, 4001 Basel, Switzerland; (B.G.); (A.D.)
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland
| | - Marie-Noëlle Giraud
- Cardiology, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
| | - Martin Flück
- Swiss Federal Institute of Sport Magglingen SFISM, 2532 Magglingen, Switzerland
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
5
|
İpekoğlu G, Apaydın N, Çetin T, Eren AN, Topçu P, Yücelsoy B, Civelek G, Sakar M. Examining the relationship between genetic polymorphisms (BDKRB2, GNB3, HIF1A, MCT1, NOS3) and endurance athlete status. Eur J Appl Physiol 2024; 124:1943-1958. [PMID: 38753016 PMCID: PMC11199302 DOI: 10.1007/s00421-024-05498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/05/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE Genetic factors are important in terms of athletic performance. Recent studies to determine the relationship between the genes that lead to physiological responses have attracted attention. In this respect, this meta-analysis study was designed to examine the relationship between genetic polymorphism (BDKRB2 rs5810761, GNB3 rs5443, HIF1A rs11549565, MCT1 rs1049434, NOS3 rs2070744) and endurance athlete's status. METHODS The search included studies published from 2009 to 2022. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned. Only case-control studies were included in the meta-analysis. To determine the relevant studies, Pubmed, Web of Science databases were systematically scanned, and a total of 31 studies met the criteria for inclusion in the meta-analysis. Relevant data from the included studies were collected and analyzed using a random effects or fixed effects model. The effect size was calculated as the odds ratio or a risk ratio the corresponding 95% confidence intervals. RESULTS According to the results of the analysis, BDKRB2 rs5810761 + 9 allele, and NOS3 rs2070744 T allele were significantly more prevalent in endurance athletes (p < 0.05). Genotype distributions of BDKRB2 rs5810761, MCT1 rs1049434, and NOS3 rs2070744 showed significant differences in the dominant model (p < 0.05). However, no significant association was found between endurance athlete status and GNB3 rs5443 and HIF1A rs11549465 polymorphisms. CONCLUSION These results show that some gene polymorphisms play an important role in endurance athlete status and suggest that having a specific genetic basis may also confer a physiological advantage for performance.
Collapse
Affiliation(s)
| | | | - Tuğba Çetin
- School of Physical Education and Sports, Karabuk University, Karabuk, Turkey.
| | | | - Pelinsu Topçu
- Faculty of Sport Science, Ordu University, Ordu, Turkey
| | | | | | - Mert Sakar
- Faculty of Sport Science, Ordu University, Ordu, Turkey
| |
Collapse
|
6
|
Bu YL, Wang C, Zhao C, Lu X, Gao W. The association of alcohol consumption with the risk of sarcopenia: a dose-response meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:305-320. [PMID: 38232346 DOI: 10.1080/00952990.2023.2300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/19/2024]
Abstract
Background: Sarcopenia is defined as a progressive loss of skeletal muscle mass plus a decline in muscle strength and/or reduced physical performance with advancing age. The results of current studies on the relationship between drinking and sarcopenia remain controversial.Objectives: The aim of this meta-analysis was to evaluate the association of alcohol consumption with the risk of sarcopenia.Methods: Systematic searches were conducted without language restrictions from the beginning of each database to September 20, 2023 on PubMed, Embase, Cochrane Library, Web of Science, Wanfang Data, Chinese BioMedical Literature, and China national knowledge infrastructure databases. Meta-analysis was conducted to pool the study-specific odds ratios (ORs) with 95% confidence interval (CI).Results: Sixty-two studies with 454,643 participants were enrolled. The meta-analysis of proportions revealed that alcohol consumption was not associated with the presence of sarcopenia, with a pooled OR of 0.964 (95% CI = 0.912-1.019). Further subgroup analysis indicated that alcohol consumption was correlated with lower risk of sarcopenia in men (OR = 0.763; 95% CI = 0.622-0.938; P = .010). The nonlinear dose-response analysis suggested a J-shaped association between alcohol consumption and the risk of sarcopenia, with a nadir at the amounts of alcohol consumption of 6.6 grams/day (OR = 0.765; 95% CI = 0.608-0.957; P < .05).Conclusions: The results of this meta-analysis indicate that alcohol consumption is not a risk factor for the development of sarcopenia. Any suggestion of a putative protective effect of alcohol should be treated with caution, particularly in light of the overall lack of relationship reported in the present comprehensive meta-analysis.
Collapse
Affiliation(s)
- Yun-Ling Bu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Cao Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Cheng J, Zhou J. Unraveling the gut health puzzle: exploring the mechanisms of butyrate and the potential of High-Amylose Maize Starch Butyrate (HAMSB) in alleviating colorectal disturbances. Front Nutr 2024; 11:1285169. [PMID: 38304546 PMCID: PMC10830644 DOI: 10.3389/fnut.2024.1285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal disturbances encompass a variety of disorders that impact the colon and rectum, such as colitis and colon cancer. Butyrate, a short-chain fatty acid, plays a pivotal role in supporting gut health by nourishing colonocytes, promoting barrier function, modulating inflammation, and fostering a balanced microbiome. Increasing colorectal butyrate concentration may serve as a critical strategy to improve colon function and reduce the risk of colorectal disturbances. Butyrylated high-amylose maize starch (HAMSB) is an edible ingredient that efficiently delivers butyrate to the colon. HAMSB is developed by esterifying a high-amylose starch backbone with butyric anhydride. With a degree of substitution of 0.25, each hydroxy group of HAMSB is substituted by a butyryl group in every four D-glucopyranosyl units. In humans, the digestibility of HAMSB is 68% (w/w), and 60% butyrate molecules attached to the starch backbone is absorbed by the colon. One clinical trial yielded two publications, which showed that HAMSB significantly reduced rectal O6-methyl-guanine adducts and epithelial proliferation induced by the high protein diet. Fecal microbial profiles were assessed in three clinical trials, showing that HAMSB supplementation was consistently linked to increased abundance of Parabacteroides distasonis. In animal studies, HAMSB was effective in reducing the risk of diet- or AOM-induced colon cancer by reducing genetic damage, but the mechanisms differed. HAMSB functioned through affecting cecal ammonia levels by modulating colon pH in diet-induced cancer, while it ameliorated chemical-induced colon cancer through downregulating miR19b and miR92a expressions and subsequently activating the caspase-dependent apoptosis. Furthermore, animal studies showed that HAMSB improved colitis via regulating the gut immune modulation by inhibiting histone deacetylase and activating G protein-coupled receptors, but its role in bacteria-induced colon colitis requires further investigation. In conclusion, HAMSB is a food ingredient that may deliver butyrate to the colon to support colon health. Further clinical trials are warranted to validate earlier findings and determine the minimum effective dose of HAMSB.
Collapse
Affiliation(s)
- Junrui Cheng
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| | - Jing Zhou
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| |
Collapse
|
8
|
Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez-Guardado I. Examining the Interaction between Exercise, Gut Microbiota, and Neurodegeneration: Future Research Directions. Biomedicines 2023; 11:2267. [PMID: 37626763 PMCID: PMC10452292 DOI: 10.3390/biomedicines11082267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Physical activity has been demonstrated to have a significant impact on gut microbial diversity and function. Emerging research has revealed certain aspects of the complex interactions between the gut, exercise, microbiota, and neurodegenerative diseases, suggesting that changes in gut microbial diversity and metabolic function may have an impact on the onset and progression of neurological conditions. This study aimed to review the current literature from several databases until 1 June 2023 (PubMed/MEDLINE, Web of Science, and Google Scholar) on the interplay between the gut, physical exercise, microbiota, and neurodegeneration. We summarized the roles of exercise and gut microbiota on neurodegeneration and identified the ways in which these are all connected. The gut-brain axis is a complex and multifaceted network that has gained considerable attention in recent years. Research indicates that gut microbiota plays vital roles in metabolic shifts during physiological or pathophysiological conditions in neurodegenerative diseases; therefore, they are closely related to maintaining overall health and well-being. Similarly, exercise has shown positive effects on brain health and cognitive function, which may reduce/delay the onset of severe neurological disorders. Exercise has been associated with various neurochemical changes, including alterations in cortisol levels, increased production of endorphins, endocannabinoids like anandamide, as well as higher levels of serotonin and dopamine. These changes have been linked to mood improvements, enhanced sleep quality, better motor control, and cognitive enhancements resulting from exercise-induced effects. However, further clinical research is necessary to evaluate changes in bacteria taxa along with age- and sex-based differences.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Nucleus of Studies for High Performance and Health (CIDISAD-NARS), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
- Sports Injury Clinic (Rehab & Readapt), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia;
- Research Group in Biochemistry and Molecular Biology, Faculty of Sciences and Education, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Luis M. Gómez-Miranda
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Juan J. Calleja-Núñez
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| |
Collapse
|
9
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
10
|
Special Issue “Optimising Interval Training Prescription”. Sports (Basel) 2022; 10:sports10060087. [PMID: 35736827 PMCID: PMC9227011 DOI: 10.3390/sports10060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
|