1
|
Homem BGC, Borges LPC, de Lima IBG, Guimarães BC, Spasiani PP, Ferreira IM, Meo-Filho P, Berndt A, Alves BJR, Urquiaga S, Boddey RM, Casagrande DR. Forage peanut legume as a strategy for improving beef production without increasing livestock greenhouse gas emissions. Animal 2024; 18:101158. [PMID: 38703756 DOI: 10.1016/j.animal.2024.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024] Open
Abstract
The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass - Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions.
Collapse
Affiliation(s)
- B G C Homem
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil; Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - L P C Borges
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I B G de Lima
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - B C Guimarães
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P P Spasiani
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - I M Ferreira
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil
| | - P Meo-Filho
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - A Berndt
- Embrapa Southeast Livestock, Rodovia Washington Luiz, km 234, Sao Carlos, SP 13560-970, Brazil
| | - B J R Alves
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - S Urquiaga
- Embrapa Agrobiologia, Rodovia BR-465, km 7, Seropédica 23897-970 RJ, Brazil
| | - R M Boddey
- Department of Soil Science, Federal Rural University of Rio de Janeiro, Rodovia BR 465, km 7, Seropédica, RJ 23897-000, Brazil
| | - D R Casagrande
- Department of Animal Sciences, Federal University of Lavras, UFLA, Lavras, MG 37200-900, Brazil.
| |
Collapse
|
2
|
de Faria Melo CC, Amaral DS, de Moura Zanine A, de Jesus Ferreira D, de Mello Prado R, de Cássia Piccolo M. Nanosilica enhances morphogenic and chemical parameters of Megathyrsus maximus grass under conditions of phosphorus deficiency and excess stress in different soils. BMC PLANT BIOLOGY 2023; 23:497. [PMID: 37845606 PMCID: PMC10580593 DOI: 10.1186/s12870-023-04521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.
Collapse
Affiliation(s)
- Cíntia Cármen de Faria Melo
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil.
| | - Danilo Silva Amaral
- Department of Engineering and Exact Sciences, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Anderson de Moura Zanine
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Daniele de Jesus Ferreira
- Center for Agricultural and Environmental Sciences, Department of Animal Science, Federal University of Maranhão, BR 222 km 04 Highway, Chapadinha, MA, 65500000, Brazil
| | - Renato de Mello Prado
- Laboratory of Plant Nutrition, Department of Agricultural Production Sciences (Soil and Fertilizer Sector), School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Prof. Paulo Donato Castellane Avenue, Jaboticabal, SP, 14884900, Brazil
| | - Marisa de Cássia Piccolo
- Laboratory of Nutrient Cycling, Center of Nuclear Energy in Agriculture, University of São Paulo (USP), 303 Centenário Avenue, Piracicaba, SP, 13400970, Brazil
| |
Collapse
|
3
|
Lima LDO, Ongaratto F, Dallantonia EE, Leite RG, Argentini GP, Fernandes MHMDR, Reis RA, Vyas D, Malheiros EB. N-fertilization of tropical pastures improves performance but not methane emission of Nellore growing bulls. J Anim Sci 2023; 101:skac362. [PMID: 36317228 PMCID: PMC9831129 DOI: 10.1093/jas/skac362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022] Open
Abstract
Grazing management and N-fertilizer have been reported to improve tropical forage productivity and quality, however, their effect on methane emission of grazing animals remains uncertain. Therefore, this study aimed to assess the effects of increasing application rates of nitrogen (N) fertilization of Marandu palisadegrass under continuous stocking on intake, digestibility, nitrogen balance, and enteric methane emissions of Nellore growing bulls. We hypothesized that changes in the forage nutritive value caused by N fertilization of pastures combined with adequate grazing management (e.g., greater crude protein [CP] and digestibility) would lead to an increase in animal productivity (e.g., greater average daily gain [ADG] and gain per area), and then, to a decrease in methane emission intensity. Treatments consisted of different annual application rates of nitrogen fertilization: 0, 75, and 150 kg N/ha using ammonium nitrate (32% N) as the nitrogen source. The experimental design was completely randomized, with three treatments and four replications (12 paddocks). Intake, digestibility, N balance, and methane emissions were measured in eight animals per treatment. CP intake, digestibility and N balance increased linearly with the increase in N fertilization (P < 0.05). In addition, stocking rate (SR) and ADG linearly increased from 1.75 animal unit (AU = 450 kg)/ha and 0.62 kg/d (0 kg N/ha) to 3.75 AU/ha and 0.82 kg/d (150 kg N/ha), respectively. Individual methane emissions nor methane emission intensity were affected by treatment with an average of 164.7 g/d and 199.7 g/kg ADG (P > 0.05). Annual N fertilization with ammonium nitrate between 75 and 150 kg N/ha in palisadegrass pastures under continuous stocking enhances animal performance per unit area yet not affecting neither methane production nor intensity.
Collapse
Affiliation(s)
- Lais de Oliveira Lima
- Department of Animal Sciences, Sao Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | - Fernando Ongaratto
- Department of Animal Sciences, Sao Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | | | - Rhaony Gonçalves Leite
- Department of Animal Sciences, Sao Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | | | | | - Ricardo Andrade Reis
- Department of Animal Sciences, Sao Paulo State University, Jaboticabal, SP 14884-900, Brazil
| | - Diwakar Vyas
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Euclides Braga Malheiros
- Department of Mathematics and Statistics Sao Paulo State University, Jaboticabal, SP 14884-900, Brazil
| |
Collapse
|
4
|
da Silva HMS, Dubeux Júnior JCB, Silveira ML, Lira Junior MA, Cardoso AS, Vendramini JMB. Greenhouse gas mitigation and carbon sequestration potential in humid grassland ecosystems in Brazil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116269. [PMID: 36126601 DOI: 10.1016/j.jenvman.2022.116269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/30/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Climate change is a major constraint on the sustainability of the humid tropics, maintaining ecosystem services, food production, and social functioning. Humid tropics play an essential role in C storage and greenhouse gas (GHG) emission reduction. Unfortunately, unplanned economic exploration, human occupation, and lack of knowledge of techniques to maintain ecosystem services negatively affect the humid tropics. In this study, we focused on the mechanisms of GHG emissions, C storage, and their mitigation strategies. This review indicated technologies that can be adopted by farmers in humid tropics to maintain or increase their capacity to store C stocks and reduce GHG emissions. The adoption of climate-smart agriculture technologies and the regulation of ecosystem services markets will accelerate the progress of preserving the humid tropics. Improved management practices, such as proper N fertilizer management and the introduction of N2-fixing legumes, can increase soil C sequestration, providing economic and environmental trade-offs associated with these management strategies. Public and private investments toward knowledge dissemination and technology adoption regarding GHG emissions reduction and soil C storage are needed to allow humid tropics to maintain their critical function of generating environmental and societal benefits.
Collapse
Affiliation(s)
- Hiran M S da Silva
- Range Cattle Research and Education Center, University of Florida, Ona, FL, USA.
| | | | - Maria L Silveira
- Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - Mario A Lira Junior
- Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, s/n, Recife, Pernambuco, Brazil
| | - Abmael S Cardoso
- Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| | - João M B Vendramini
- Range Cattle Research and Education Center, University of Florida, Ona, FL, USA
| |
Collapse
|
5
|
Response of Pasture Nitrogen Fertilization on Greenhouse Gas Emission and Net Protein Contribution of Nellore Young Bulls. Animals (Basel) 2022; 12:ani12223173. [PMID: 36428400 PMCID: PMC9686958 DOI: 10.3390/ani12223173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to evaluate the greenhouse gas (GHG) emission and net protein contribution (NPC) of Nellore young bulls grazing marandu palisade grass (Urochloa brizantha cv. Marandu) under three levels of pasture nitrogen (N) fertilization during backgrounding and finished on pasture or feedlot, based on concepts of sustainable intensification. The treatments were: System 1: pastures without N fertilizer during backgrounding, and animals finished on pasture supplemented with high concentrate at a rate of (20 g of concentrate per kg of body weight; P0N + PS); System 2: pastures fertilized with 75 kg N ha−1 year−1 during backgrounding and animals finished on feedlot fed a total mixed ration (TMR; P75N + F); and System 3: pastures fertilized with 150 kg N ha−1 year−1 during backgrounding, and animals finished on feedlot fed a TMR (P150N + F). During backgrounding, all pastures were managed under a continuous and put-and-take stock grazing system. All animals were supplemented with only human-inedible feed. Primary data from systems 1, 2 and 3, respectively, in the field experiment were used to model GHG emissions and NPC (a feed-food competitiveness index), considering the backgrounding and finishing phases of the beef cattle production system. Average daily gain (ADG) was 33% greater for the N fertilizer pastures, while carcass production and stocking rate (SR) more than doubled (P75N + F and P150N + F). Otherwise, the lowest GHG emission intensity (kg CO2e kg carcass−1) was from the P0N + PS system (without N fertilizer) but did not differ from the P75N + F system (p > 0.05; pastures with 75 kg N ha−1). The main source of GHG emission in all production systems was from enteric methane. Moreover, NPC was above 1 for all production systems, indicating that intensified systems contributed positively to supply human protein requirements. Moderate N fertilization of pastures increased the SR twofold without increasing greenhouse gas emissions intensity. Furthermore, tropical beef production systems are net contributors to the human protein supply without competing for food, playing a pivotal role in the food security agenda.
Collapse
|
6
|
Response of Phytogenic Additives on Enteric Methane Emissions and Animal Performance of Nellore Bulls Raised in Grassland. SUSTAINABILITY 2022. [DOI: 10.3390/su14159395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study was to evaluate the intake and digestibility of nutrients, emission of enteric CH4, and productive performance of Nellore bulls grazing Urochloa brizantha cv. Marandu palisade grass pastures during the rainy season, receiving an energy supplement or mineral supplement, with or without the inclusion of phytogenic additives. Forty-eight Nellore bulls were treated with: (1) energy supplement without the inclusion of phytogenic additives; (2) energy supplement with the inclusion of phytogenic additives; (3) mineral supplement without the inclusion of phytogenic additives; and (4) mineral supplement with the inclusion of phytogenic additives. Consumption of total dry matter (DM), crude protein (CP), apNDF, and energy; digestibility of DM, CP, and energy; average daily gain; stocking rate; and gain per area were higher in animals consuming energy supplements than those consuming mineral supplements. Digestibility of DM, NDF, and energy levels were lower in animals that consumed phytogenic additives. Compared with mineral supplements, the supply of energy supplements provides higher nutrient intake, increases enteric CH4 emission, and improves nutrient digestibility, providing a greater productive performance. The inclusion of phytogenic additives negatively affected nutrient intake and digestibility, did not reduce enteric CH4 emission, and influenced productive performance.
Collapse
|
7
|
Fonseca NVB, Cardoso ADS, Berça AS, Dornellas IA, Ongaratto F, Silva MLC, Ruggieri AC, Reis RA. Effect of different nitrogen fertilizers on nitrogen efficiency use in Nellore bulls grazing on Marandu palisade grass. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Scholz Berça A, Prates Romanzini E, da Silva Cardoso A, Eduardo Ferreira L, Pastori D’Aurea A, Bertelli Fernandes L, Andrade Reis R. Advances in Pasture Management and Animal Nutrition to Optimize Beef Cattle Production in Grazing Systems. Vet Med Sci 2022. [DOI: 10.5772/intechopen.99687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The increasing demand of meat requires the adoption of sustainable intensification livestock systems, applying nutritional strategies to reduce any negative contribution from beef cattle to global warming and, at the same time, to increase animal performance and productive efficiency. The pasture management practices and feed supplementation, mainly using non-edible feed with less costs, could minimize environmental and social impacts, resulting in higher productivity with less inputs utilization. Tropical grass submitted to grazing management according to plant height present high soluble protein and low levels of indigestible neutral detergent fiber contents. Energy or rumen undegradable protein supplementation, associated to alternative additives to antibiotics effects, such as probiotics, tannin, essential oils and saponin, can help to fully exploit the animal genetic potential and nutrient utilization efficiency, which decreases greenhouse gases emissions and improves animal performance. Hence, more information about these tools can make the livestock systems in tropical pasture more efficient and eco-friendlier.
Collapse
|
9
|
Zebu cattle fed dry distiller’s grain or cottonseed meal had greater nitrogen utilization efficiency than non-supplemented animals. Trop Anim Health Prod 2022; 54:119. [DOI: 10.1007/s11250-022-03126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
10
|
Romanzini EP, Watanabe RN, Fonseca NVB, Berça AS, Brito TR, Bernardes PA, Munari DP, Reis RA. Modern livestock farming under tropical conditions using sensors in grazing systems. Sci Rep 2022; 12:2654. [PMID: 35173245 PMCID: PMC8850600 DOI: 10.1038/s41598-022-06650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to evaluate a commercial sensor—a three-axis accelerometer—to predict animal behavior with a variety of conditions in tropical grazing systems. The sensor was positioned on the underjaw of young bulls to detect the animals’ movements. A total of 22 animals were monitored in a grazing system, during both seasons (wet and dry), with different quality and quantity forage allowance. The machine learning (ML) methods used were random forest (RF), convolutional neural net and linear discriminant analysis; the metrics used to determine the best method were accuracy, Kappa coefficient, and a confusion matrix. After predicting animal behavior using the best ML method, a forecast for animal performance was developed using a mechanistic model: multiple linear regression to correlate intermediate average daily gain (iADG) observed versus iADG predicted. The best ML method yielded accuracy of 0.821 and Kappa coefficient of 0.704, was RF. From the forecast for animal performance, the Pearson correlation was 0.795 and the mean square error was 0.062. Hence, the commercial Ovi-bovi sensor, which is a three-axis accelerometer, can act as a powerful tool for predicting animal behavior in beef cattle production developed under a variety tropical grazing condition.
Collapse
Affiliation(s)
- Eliéder Prates Romanzini
- Department of Animal Science, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil.
| | - Rafael Nakamura Watanabe
- Department of Engineering and Exact Sciences, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Natália Vilas Boas Fonseca
- Department of Animal Science, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Andressa Scholz Berça
- Department of Animal Science, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Thaís Ribeiro Brito
- Department of Animal Science, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| | - Priscila Arrigucci Bernardes
- Department of Animal Science and Rural Development, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88045-108, Brazil
| | - Danísio Prado Munari
- Department of Engineering and Exact Sciences, São Paulo State University (Unesp), Jaboticabal, SP, 14884-900, Brazil
| | - Ricardo Andrade Reis
- Department of Animal Science, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
11
|
Malafaia GC, Mores GDV, Casagranda YG, Barcellos JOJ, Costa FP. The Brazilian beef cattle supply chain in the next decades. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
de Araújo TLDR, da Silva WL, Berça AS, Cardoso ADS, Barbero RP, Romanzini EP, Reis RA. Effects of Replacing Cottonseed Meal with Corn Dried Distillers' Grain on Ruminal Parameters, Performance, and Enteric Methane Emissions in Young Nellore Bulls Reared in Tropical Pastures. Animals (Basel) 2021; 11:2959. [PMID: 34679978 PMCID: PMC8532884 DOI: 10.3390/ani11102959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/28/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Two experiments were conducted to evaluate the effect of replacing cottonseed meal with DDG on ruminal parameters, methane (CH4) emissions (Experiment 1), and animal performance (Experiment 2) of young Nellore bulls grazing Marandu grass during the rainy season. Four supplementation strategies were used in both experiments: (1) Mineral supplementation (MS); (2) conventional multiple supplement (energy/protein) with cottonseed meal and citrus pulp (CMS); (3) CMS with 50% cottonseed meal replaced by DDG (50DDG); and (4) CMS with 100% cottonseed meal replaced by DDG (100DDG). The 50DDG condition resulted in greater intake of dry matter (p = 0.033), organic matter (OM) (p = 0.050), forage (p = 0.035), and digestible OM (p = 0.031) than 100DDG. The supplemented animals presented greater final body weight (BW) and average daily gain than the animals consuming MS (p = 0.011), and lower pH, acetate, and acetate:propionate (p < 0.05). However, the treatments had no influence on stocking rate, gain per area, and enteric CH4 emissions (p > 0.05). Replacing cottonseed meal with DDG does not result in great variations in ruminal parameters, animal performance, and enteric CH4 emissions of grazing Nellore cattle during the rearing phase in the wet season. Both protein sources in 0.3% BW supplementation can be used to intensify beef cattle production in pastures.
Collapse
Affiliation(s)
- Tiago Luís Da Ros de Araújo
- Department of Animal Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (T.L.D.R.d.A.); (A.d.S.C.); (E.P.R.); (R.A.R.)
| | | | - Andressa Scholz Berça
- Department of Animal Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (T.L.D.R.d.A.); (A.d.S.C.); (E.P.R.); (R.A.R.)
| | - Abmael da Silva Cardoso
- Department of Animal Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (T.L.D.R.d.A.); (A.d.S.C.); (E.P.R.); (R.A.R.)
| | - Rondineli Pavezzi Barbero
- Department of Animal Sciences, Federal Rural University of Rio de Janeiro, Seropédica 23890-000, Brazil;
| | - Eliéder Prates Romanzini
- Department of Animal Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (T.L.D.R.d.A.); (A.d.S.C.); (E.P.R.); (R.A.R.)
| | - Ricardo Andrade Reis
- Department of Animal Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil; (T.L.D.R.d.A.); (A.d.S.C.); (E.P.R.); (R.A.R.)
| |
Collapse
|
13
|
Leite RG, Cardoso ADS, Fonseca NVB, Silva MLC, Tedeschi LO, Delevatti LM, Ruggieri AC, Reis RA. Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass. Sci Rep 2021; 11:14786. [PMID: 34285251 PMCID: PMC8292324 DOI: 10.1038/s41598-021-94098-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of nitrogen (N) fertilization levels on protein and carbohydrate fractions in Marandu palisadegrass pasture [Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster] were investigated in a pasture over five years. The experimental design was completely randomized with four levels of N (0, 90, 180, and 270 kg N ha-1, as urea) for five years, and with three replicates. The study was conducted in a continuously stocked pasture during the forage growing season (December to April) in a tropical region. The effects of N fertilization were similar across the five years. With increasing N fertilization, the concentrations of crude protein (CP) increased from 103 to 173 g kg−1 (P < 0.001), soluble fractions (Fraction A + B1) increased from 363 to 434 g kg−1 of total CP (P = 0.006); neutral detergent fiber (NDF) decreased from 609 to 556 g kg−1 (P = 0.037); indigestible NDF (P = 0.046), potentially degradable neutral detergent fiber (P = 0.037), and acid detergent fiber decreased (P = 0.05), and total digestible nutrient (TDN) increased (P < 0.001). Increasing N fertilization decreased the concentrations of Fraction C (P = 0.014) and total carbohydrates (P < 0.0001), and increased CP:organic matter digestibility (P < 0.01). Concentrations of neutral detergent fiber free of ash and protein (P = 0.003), indigestible neutral detergent fiber (P < 0.001), neutral detergent fiber potentially degradable (P = 0.11), CP (P < 0.001), Fraction A + B1 (P < 0.001), Fraction B2 (P < 0.001), Fraction B3 (P < 0.01), and non-structural carbohydrates differed (P < 0.001) across years. Therefore, N fertilization can be used to increase CP, soluble protein, and TDN.
Collapse
Affiliation(s)
- Rhaony Gonçalves Leite
- Department of Animal Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| | - Abmael da Silva Cardoso
- Department of Animal Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil.
| | | | | | - Luís Orlindo Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Lutti Maneck Delevatti
- Department of Animal Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| | - Ana Cláudia Ruggieri
- Department of Animal Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| | - Ricardo Andrade Reis
- Department of Animal Sciences, São Paulo State University, Jaboticabal, SP, 14884-900, Brazil
| |
Collapse
|
14
|
Mitigating Greenhouse Gas Emissions from Beef Cattle Production in Brazil through Animal Management. SUSTAINABILITY 2021. [DOI: 10.3390/su13137207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beef cattle production is an important agricultural activity in Brazil, which influences environmental and resource consumption. This study analyzed greenhouse gas (GHG) emission impacts from 17 farms, representing the Brazil’s productive system and determined possible improvements in the production chain. Methane, nitrous oxide, and carbon dioxide emissions were evaluated using the updated Intergovernmental Panel on Climate Change (IPCC) guidelines for national inventories. The GHG inventory included emissions from animals, feeds, and “cradle-to-farm-gate” operations for animal management. Regression analyses of carbon dioxide equivalent (CO2eq) emissions and productive indices were performed to identify possible GHG emission hotspots. The results varied considerably among the farms. The GHG yield ranged from 8.63 to 50.88 CO2eq kg carcass−1. The productive indices of average daily gain (p < 0.0001), area productivity (p = 0.058), and slaughtering age (p < 0.0001) were positively correlated with GHG yield. However, no correlation was found with the stocking rate (p = 0.21). The production chain could be improved through accurate animal management strategies that reduce the slaughtering age and daily weight gain individually or per area using pasture management and strategic animal supplementation, which could subsequently reduce GHG emissions in beef cattle production.
Collapse
|
15
|
Does the Effect of Replacing Cottonseed Meal with Dried Distiller's Grains on Nellore Bulls Finishing Phase Vary between Pasture and Feedlot? Animals (Basel) 2021; 11:ani11010085. [PMID: 33466432 PMCID: PMC7824892 DOI: 10.3390/ani11010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The use of less costly products that are not consumed by humans in animal feed has gained increasing attention in the context of sustainable production. Dried distiller’s grains (DDG), a co-product of the production of ethanol from corn, stands out for being efficient in the nutrition of ruminants, meeting both the energy and protein demands of the diets, when the cattle are kept in the pasture or feedlot. The study aimed to evaluate the effect of replacing cottonseed meal (CM) by DDG in two levels (50% (50DDG) and 100% (100DDG)), in terms of efficiency in the productive aspects of cattle finishing phase comparing pasture versus feedlot. The effect of replacing CM by DDG on dry matter, nutrients intake and nutrients digestibility depends on finishing system. While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture. Animal performance and final body weight were higher in the feedlot. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment. Abstract The study aimed to evaluate the effect of replacing cottonseed meal by dried distiller’s grains (DDG) in terms of efficiency in the productive aspects of beef cattle finishing in pasture versus feedlot. The experiment was conducted in a completely randomized design in a 2 × 3 factorial arrangement, with two production systems (pasture versus feedlot) and three supplements: CM, conventional supplement with cottonseed meal (CM) as a protein source; 50DDG: supplement with 50% replacement of CM by DDG; and 100DDG: 100% replacement. The effect of replacing CM by DDG on dry matter and nutrients intake and nutrients digestibility depends on the finishing system (p < 0.05). While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture (p < 0.05). Animal performance and final body weight were higher in the feedlot (p < 0.0001), with averages of 1.57 kg/d and 566 kg of final body weight (FBW) for feedlot, and 0.99 kg/d and 504 kg FBW for pasture. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment.
Collapse
|