1
|
Auñon-Lopez A, Alberdi-Cedeño J, Pignitter M, Castejón N. Microalgae as a New Source of Oxylipins: A Comprehensive LC-MS-Based Analysis Using Conventional and Green Extraction Methods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16749-16760. [PMID: 39016675 PMCID: PMC11299188 DOI: 10.1021/acs.jafc.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Microalgae are promising sources of essential lipids, including omega-3 and omega-6 polyunsaturated fatty acids (n-3 and n-6 PUFA) and novel lipid metabolites like oxylipins. However, limited data exist on the oxylipin profile, its characterization, and the potential impact of the extraction process on these metabolites in microalgae. Thus, our study aimed to investigate the fatty acid and oxylipin profile of four microalgal species of interest (Microchloropsis gaditana, Tisochrysis lutea, Phaeodactylum tricornutum, and Porphyridium cruentum) while also examining the impact of the extraction method, with a focus on developing a greener process using ultrasound-assisted extraction (UAE) and ethanol. The UAE method showed similar oxylipin profiles, generally yielding concentrations comparable to those of the conventional Folch method. In total, 68 oxylipins derived from n-3 and n-6 PUFA were detected, with the highest concentrations of n-3 oxylipins found in P. tricornutum and T. lutea and of n-6 oxylipins in P. cruentum. This study provides the most extensive oxylipin characterization of these microalgae species to date, offering insights into alternative extraction methods and opening new avenues for further investigation of the significance of oxylipins in microalgae.
Collapse
Affiliation(s)
- Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jon Alberdi-Cedeño
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz (Alava), Spain
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Natalia Castejón
- Institute of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
2
|
Maia C, Pôjo V, Tavares T, Pires JCM, Malcata FX. Surfactant-Mediated Microalgal Flocculation: Process Efficiency and Kinetic Modelling. Bioengineering (Basel) 2024; 11:722. [PMID: 39061804 PMCID: PMC11274027 DOI: 10.3390/bioengineering11070722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Microalgae are a valuable source of lipids, proteins, and pigments, but there are challenges in large-scale production, especially in harvesting. Existing methods lack proven efficacy and cost-effectiveness. However, flocculation, an energy-efficient technique, is emerging as a promising solution. Integrating surfactants enhances microalgal harvesting and disruption simultaneously, reducing processing costs. This study investigated cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulphate (SDS) for harvesting Tetraselmis sp. strains (75LG and 46NLG). CTAB exhibits superior results, with 88% harvesting efficiency at 1500 and 2000 mg L-1 for 75LG and 46NLG, respectively, for 60 min of sedimentation-thus being able to reduce the operating time. Beyond evaluating harvesting efficiency, our study explored the kinetics of the process; the modified Gompertz model led to the best fit. Furthermore, the largest kinetic constants were observed with CTAB, thus highlighting its efficacy in optimising the microalgal harvesting process. With the incorporation of the suggested enhancements, which should be addressed in future work, CTAB could hold the potential to optimise microalgal harvesting for cost-effective and sustainable large-scale production, eventually unlocking the commercial potential of microalgae for biodiesel production.
Collapse
Affiliation(s)
- Carolina Maia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Vânia Pôjo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Sarpal AS, Teixeira CMLL, Costa ICR. Cultivation of Chlorella vulgaris in wastewater: biodiesel potential and wastewater remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48795-48810. [PMID: 38990262 DOI: 10.1007/s11356-024-34231-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
The present investigation has evaluated the use of effluents from a secondary municipal wastewater treatment plant for biomass production and potential of the biomass for biodiesel production. Cultivations of Chlorella vulgaris using wastewater, wastewater with supplementation, and WC medium were carried out. Effect of wastewater collected in different months on biomass productivity (BP) and lipid composition was studied. Methods based on NMR and GC-MS techniques were applied for determining the composition of the lipids and their fatty acid profile including poly unsaturated fatty acids (PUFAs). Lipids extracted are comprised of both neutral (tri acyl glycerides, TAG; free fatty acids, FFA) and polar (glyco glycero/phospho) lipids. The TAG content of the extracted lipids was determined in the range of 22.5-41.3% w/w. The NMR and GC-MS compositional results of microalgal lipids of biomasses cultivated in wastewater without nutrient supplementation, collected in different months, showed potential for biodiesel production. The fatty acid profiles of neutral and polar lipids, which are mainly comprised of saturated and unsaturated long alkyl chain (C16-C22) fatty acids, are potential sources for the biodiesel and food industry. The concentration of nitrates (45-78 mg L-1) in wastewater without supplementation, collected in different months, was found to be optimum to enable cultivation of biomasses with reasonably good BP of 21.5-28.1 mg L-1 day-1. Similar results have been obtained in the present work as well as reported in the literature in the case of WC medium (nitrate, 69 mg L-1) with BP of 25.5-28.2 mg L-1 day-1, thus highlighted the significance of the presented work.
Collapse
Affiliation(s)
- Amarjit S Sarpal
- Instituto Nacional de Metrologia, Qualidade E Tecnologia-INMETRO, Avenida Nossa Senhora das Gracas 50Duque de ́Caxias, Xerem, RJ, Brazil.
- Indian Oil Corporation Ltd., R&D Center, Fariadabad, Haryana, 121006, India.
| | - Cláudia M L L Teixeira
- Laboratório de Biotecnologia de M, icroalgas, Instituto Nacional de Tecnologia, Av Venezuela, 82, Sala 716, Saúde, Rio de Janeiro, RJ, Brazil
| | - Ingrid C R Costa
- Laboratório de Biotecnologia de M, icroalgas, Instituto Nacional de Tecnologia, Av Venezuela, 82, Sala 716, Saúde, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Zhu M, Singer SD, Guan LL, Chen G. Emerging microalgal feed additives for ruminant production and sustainability. ADVANCED BIOTECHNOLOGY 2024; 2:17. [PMID: 38756984 PMCID: PMC11097968 DOI: 10.1007/s44307-024-00024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The global demand for animal-derived foods has led to a substantial expansion in ruminant production, which has raised concerns regarding methane emissions. To address these challenges, microalgal species that are nutritionally-rich and contain bioactive compounds in their biomass have been explored as attractive feed additives for ruminant livestock production. In this review, we discuss the different microalgal species used for this purpose in recent studies, and review the effects of microalgal feed supplements on ruminant growth, performance, health, and product quality, as well as their potential contributions in reducing methane emissions. We also examine the potential complexities of adopting microalgae as feed additives in the ruminant industry.
Collapse
Affiliation(s)
- Mianmian Zhu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| | - Stacy D. Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, LethbridgeAlberta, T1J 4B1 Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
- Faculty of Land and Food Systems, University of British Columbia, VancouverBritish Columbia, V6T 1Z4 Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAlberta, T6G 2P5 Canada
| |
Collapse
|
5
|
Rady HA, Ali SS, El-Sheekh MM. Strategies to enhance biohydrogen production from microalgae: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120611. [PMID: 38508014 DOI: 10.1016/j.jenvman.2024.120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Microalgae represent a promising renewable feedstock for the sustainable production of biohydrogen. Their high growth rates and ability to fix carbon utilizing just sunlight, water, and nutrients make them well-suited for this application. Recent advancements have focused on improving microalgal hydrogen yields and cultivation methods. This review aims to summarize recent developments in microalgal cultivation techniques and genetic engineering strategies for enhanced biohydrogen production. Specific areas of focus include novel microalgal species selection, immobilization methods, integrated hybrid systems, and metabolic engineering. Studies related to microalgal strain selection, cultivation methods, metabolic engineering, and genetic manipulations were compiled and analyzed. Promising microalgal species with high hydrogen production capabilities such as Synechocystis sp., Anabaena variabilis, and Chlamydomonas reinhardtii have been identified. Immobilization techniques like encapsulation in alginate and integration with dark fermentation have led to improved hydrogen yields. Metabolic engineering through modulation of hydrogenase activity and photosynthetic pathways shows potential for enhanced biohydrogen productivity. Considerable progress has been made in developing microalgal systems for biohydrogen. However, challenges around process optimization and scale-up remain. Future work involving metabolic modeling, photobioreactor design, and genetic engineering of electron transfer pathways could help realize the full potential of this renewable technology.
Collapse
Affiliation(s)
- Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
6
|
Miranda AM, Hernandez-Tenorio F, Villalta F, Vargas GJ, Sáez AA. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. BIOLOGY 2024; 13:199. [PMID: 38534468 DOI: 10.3390/biology13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Microalgae have commercial potential in different sectors of the industry. Specifically in modern agriculture, they can be used because they have the ability to supply nutrients to the soil and produce plant growth hormones, polysaccharides, antimicrobial compounds, and other metabolites that improve agricultural productivity. Therefore, products formulated from microalgae as biofertilizers and biostimulants turn out to be beneficial for agriculture and are positioned as a novel and environmentally friendly strategy. However, these bioproducts present challenges in preparation that affect their shelf life due to the rapid degradation of bioformulated products. Therefore, this work aimed to provide a comprehensive review of biofertilizers and biostimulants from microalgae, for which a bibliometric analysis was carried out to establish trends using scientometric indicators, technological advances were identified in terms of formulation methods, and the global market for these bioproducts was analyzed.
Collapse
Affiliation(s)
- Alejandra M Miranda
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| | - Fabian Villalta
- Centro de Investigación de Biotecnología, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Gabriel J Vargas
- I&D Cementos Argos S.A, Centro de Argos para la Innovación, Medellín 050022, Colombia
| | - Alex A Sáez
- Biological Sciences and Bioprocesses Group (CIBIOP), Environmental and Biotechnological Processes Group (GIPAB), School of Applied Sciences and Engineering, Universidad de EAFIT, Medellín 050022, Colombia
| |
Collapse
|
7
|
Gao S, Chen W, Cao S, Sun P, Gao X. Microalgae as fishmeal alternatives in aquaculture: current status, existing problems, and possible solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16113-16130. [PMID: 38315337 DOI: 10.1007/s11356-024-32143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Fishmeal is an indispensable ingredient for most aquatic animals. However, the finite supply and escalating price of fishmeal seriously limit its use in aquaculture. Thus the development of new, sustainable protein ingredients has been a research focus. Microalgae are potential fishmeal alternatives owing to their high protein content and balanced amino acid profile. Studies suggest that suitable replacement of fishmeal with microalgae is beneficial for fish growth performance, but excessive replacement would induce poor growth and feed utilization. Therefore, this paper aims to review research on the maximum substitutional level of fishmeal by microalgae and propose the main issues and possible solutions for fishmeal replacement by microalgae. The maximum replacement level is affected by microalgal species, fish feeding habits, quality of fishmeal and microalgal meals, and supplemental levels of fishmeal in the control group. Microalgae could generally replace 100%, 95%, 95%, 64.1%, 25.6%, and 18.6% fishmeal protein in diets of carp, shrimp, catfish, tilapia, marine fish, and salmon and trout, respectively. The main issues with fishmeal replacement using microalgae include low production and high production cost, poor digestibility, and anti-nutritional factors. Possible solutions to these problems are recommended in this paper. Overall, microalgae are promising fishmeal alternatives in aquaculture.
Collapse
Affiliation(s)
- Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Weijun Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaochan Gao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
8
|
Fakhimi N, Torres MJ, Fernández E, Galván A, Dubini A, González-Ballester D. Chlamydomonas reinhardtii and Microbacterium forte sp. nov., a mutualistic association that favors sustainable hydrogen production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169559. [PMID: 38159768 DOI: 10.1016/j.scitotenv.2023.169559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
A naturally occurring multispecies bacterial community composed of Bacillus cereus and two novel bacteria (Microbacterium forte sp. nov. and Stenotrophomonas goyi sp. nov.) has been identified from a contaminated culture of the microalga Chlamydomonas reinhardtii. When incubated in mannitol- and yeast extract-containing medium, this bacterial community can promote and sustain algal hydrogen production up to 313 mL H2·L-1 for 17 days and 163.5 mL H2·L-1 for 25 days in high-cell (76.7 μg·mL-1 of initial chlorophyll) and low-cell density (10 μg·mL-1 of initial chlorophyll) algal cultures, respectively. In low-cell density algal cultures, hydrogen production was compatible with algal growth (reaching up to 60 μg·mL-1 of chlorophyll). Among the bacterial community, M. forte sp. nov. was the sole responsible for the improvement in hydrogen production. However, algal growth was not observed in the Chlamydomonas-M. forte sp. nov. consortium during hydrogen-producing conditions (hypoxia), suggesting that the presence of B. cereus and S. goyi sp. nov. could be crucial to support the algal growth during hypoxia. Still, under non‑hydrogen producing conditions (aerobiosis) the Chlamydomonas-M. forte sp. nov. consortium allowed algal growth (up to 40 μg·mL-1 of chlorophyll) and long-term algal viability (>45 days). The genome sequence and growth tests of M. forte sp. nov. have revealed that this bacterium is auxotroph for biotin and thiamine and unable to use sulfate as sulfur source; it requires S-reduced forms such as cysteine and methionine. Cocultures of Chlamydomonas reinhardtii and M. forte sp. nov. established a mutualistic association: the alga complemented the nutrient deficiencies of the bacterium, while the bacterium released ammonium (0.19 mM·day-1) and acetic acid (0.15 mM·day-1) for the alga. This work offers a promising avenue for photohydrogen production concomitant with algal biomass generation using nutrients not suitable for mixotrophic algal growth.
Collapse
Affiliation(s)
- Neda Fakhimi
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain; Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Stanford, CA, 94305, United States of America.
| | - María Jesus Torres
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| | - Emilio Fernández
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| | - Aurora Galván
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| | - Alexandra Dubini
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| | - David González-Ballester
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales, Universidad de Córdoba, Córdoba 14071, Spain.
| |
Collapse
|
9
|
Dębowski M, Dudek M, Nowicka A, Quattrocelli P, Kazimierowicz J, Zieliński M. Suitability of pre-digested dairy effluent for mixotrophic cultivation of the hydrogen-producing microalgae Tetraselmis subcordiformis. ENVIRONMENTAL TECHNOLOGY 2024; 45:471-482. [PMID: 35960006 DOI: 10.1080/09593330.2022.2112981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The costs associated with microalgal biomass production can be reduced by leveraging alternative and cheap growth media. Digestate from fermentation reactors is a particularly interesting candidate for use in cultivating mixotrophic species. The aim of the present study was to assess whether pre-digested milk-industry effluent can be harnessed to grow Tetraselmis subcordiformis and produce hydrogen. The experimental series with 25% and 50% effluent in the growth medium performed the best, producing more than 2000 mgVS biomass/dm3. The biogas produced in these variants contained over 60% hydrogen. Increasing the effluent in the medium to 75% led to significant deterioration of performance, both in terms of T. subcordiformis biomass growth and biohydrogen production. The highest efficiency of nitrogen and phosphorus removal, respectively 98.1 ± 1.9% and 97.1 ± 1.4%, was observed in the system to which 25% of sewage was introduced. Increasing the share of fermented wastewater directly reduced the efficiency of removing biogenic compounds. A very strong negative correlation was found between initial N-NH4 in the growth medium and T. subcordiformis biomass production rates (R2 = 0.9177).
Collapse
Affiliation(s)
- Marcin Dębowski
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Magda Dudek
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anna Nowicka
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Piera Quattrocelli
- Sant'Anna School of Advanced Studies, Institute of Life Sciences, BioLabs, Ghezzano, Pisa, Italy
| | - Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Bialystok, Poland
| | - Marcin Zieliński
- Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Peña-Castro JM, Muñoz-Páez KM, Robledo-Narvaez PN, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. Microorganisms 2023; 11:2197. [PMID: 37764041 PMCID: PMC10535843 DOI: 10.3390/microorganisms11092197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Bacteria and yeast are being intensively used to produce biofuels and high-added-value products by using plant biomass derivatives as substrates. The number of microorganisms available for industrial processes is increasing thanks to biotechnological improvements to enhance their productivity and yield through microbial metabolic engineering and laboratory evolution. This is allowing the traditional industrial processes for biofuel production, which included multiple steps, to be improved through the consolidation of single-step processes, reducing the time of the global process, and increasing the yield and operational conditions in terms of the desired products. Engineered microorganisms are now capable of using feedstocks that they were unable to process before their modification, opening broader possibilities for establishing new markets in places where biomass is available. This review discusses metabolic engineering approaches that have been used to improve the microbial processing of biomass to convert the plant feedstock into fuels. Metabolically engineered microorganisms (MEMs) such as bacteria, yeasts, and microalgae are described, highlighting their performance and the biotechnological tools that were used to modify them. Finally, some examples of patents related to the MEMs are mentioned in order to contextualize their current industrial use.
Collapse
Affiliation(s)
- Julián Mario Peña-Castro
- Centro de Investigaciones Científicas, Instituto de Biotecnología, Universidad del Papaloapan, Tuxtepec 68301, Oaxaca, Mexico;
| | - Karla M. Muñoz-Páez
- CONAHCYT—Instituto de Ingeniería, Unidad Académica Juriquilla, Universidad Nacional Autónoma de México, Queretaro 76230, Queretaro, Mexico;
| | | | - Edgar Vázquez-Núñez
- Grupo de Investigación Sobre Aplicaciones Nano y Bio Tecnológicas para la Sostenibilidad (NanoBioTS), Departamento de Ingenierías Química, Electrónica y Biomédica, División de Ciencias e Ingenierías, Universidad de Guanajuato, Lomas del Bosque 103, Lomas del Campestre, León 37150, Guanajuato, Mexico
| |
Collapse
|
11
|
Jha P, Ghosh S, Panja A, Kumar V, Singh AK, Prasad R. Microalgae and biogas: a boon to energy sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29135-y. [PMID: 37608163 DOI: 10.1007/s11356-023-29135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The global energy generation market immensely depends on fossil fuels which balances our survival on this planet. Energy can be called as the "master element" for our daily needs, starting from household power supply, agricultural purpose, automobile and transportation, industrial workload to economic and research domains. Fuel switching initiatives are being adapted by environmentalist and scientists to bring a novel sustainable source of energy. An environment and renewable alternative to fossil fuels are a must. Over the years, the world has shifted toward generating green fuels immensely. One such potential alternative to fossil fuels are biogases. Being versatile and renewable in nature, it has drawn immense attention globally. Despite having such potentials there exist some major drawbacks which mainly deal with the starting material. One such source for biogases can be microalgae. Microalgae based biogas production can produce huge amount of energy and that has been implemented by many foreign countries and their companies. Despite being in use in many countries, there are issues which needs to be addressed which will overall improve the biogas potential from microalgae even more. This review mainly focuses on generation of biogas from microalgae as a feedstock which are very economical and sustainable in its nature, presenting improvement strategies which can be impended to boost the over biogas sector globally.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Snigdha Ghosh
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India.
| |
Collapse
|
12
|
Kim JH, Park EJ, Choi JI. Overexpression of putative glutathione peroxidase from Neopyropia-associated microorganisms in Chlamydomonas to respond to abiotic stress. Arch Microbiol 2023; 205:163. [PMID: 37010660 DOI: 10.1007/s00203-023-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023]
Abstract
Lipid accumulation in microalgae can be substantially enhanced by exposing the microalgae to abiotic stress, thus increasing biofuel production. However, this also generates reactive oxygen species (ROS), which disrupts cell metabolism and reduces their productivity. Previous mRNA sequencing analyses in Neopyropia yezoensis and its associated microorganisms elucidated a putative glutathione peroxidase (PuGPx) gene. Here, this putative glutathione peroxidase was overexpressed in the microalga Chlamydomonas reinhardtii, which increased cell growth and survival rates compared to the control group under abiotic stress. Additionally, increased lipid accumulation was observed under salinity stress, high-temperature stress, and hydrogen peroxide (H2O2)-induced oxidative stress. These results suggest that PuGPx plays a protective role against abiotic stress in C. reinhardtii and stimulates lipid accumulation, which could be considered advantageous in terms of biofuel production.
Collapse
Affiliation(s)
- Jeong Hyeon Kim
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun-Jeong Park
- Aquatic Plant Variety Center, National Institute of Fisheries Science, Mokpo, 58746, Republic of Korea.
| | - Jong-Il Choi
- Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
13
|
Modulation of the metabolite content of the unicellular rhodophyte Porphyridium purpureum using a 2-stage cultivation approach and chemical stressors. J Biotechnol 2022; 360:125-132. [PMID: 36375623 DOI: 10.1016/j.jbiotec.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
There have been growing interests in microalgal biotechnology for the biorefining of bioactive compounds such as carotenoid pigments, ω-3 fatty acids, antioxidants or antimicrobials for sectoral applications in the pharmacology, nutraceutical and cosmetic fields. This study focused on the unicellular marine rhodophyte Porphyridium purpureum CCAP 1380/1 A, which was cultivated via a two-stage batch growth mode for 10 days using hydrogen peroxide (H2O2), the phytohormone methyl jasmonate (MJ) and three plant extracts (Passiflora incarnata, Panax ginseng and Valeriana officinalis). The microalgal biomass was then analysed for its protein, phycoerythtin, carbohydrate and pigment composition together with its pigment content and antioxidant activity. Of note, MJ increased the protein and phycoerythtin content (up to 225 µg BSA eq./mg DW and 15 mg/ml, respectively) while both the MJ and H2O2 treatments increased carotenoid pigment yields (β-carotene and zeaxanthin, up to 5 and 4 mg/g, respectively). Carbohydrates were enhanced ∼10 fold by the Valeriana officinalis treatment (up 192 μg starch eq./mg). Overall, neutral lipids and antioxidants were mostly negatively affected by the plant extracts. The greatest antioxidant activity registered was obtained with the H2O2 treatment (15 μmol Trolox eq./g DW with TEAC assay). P. purpureum contains multiple valuable compounds of commercial interest. These results indicate that they can be favorably modulated using specific cultivation regimes and chemical enhancers, thereby facilitating the exploitation of the biomass by applying a suitable co-refinery pipeline.
Collapse
|
14
|
Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiol Res 2022; 265:127187. [DOI: 10.1016/j.micres.2022.127187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/20/2023]
|
15
|
Je S, Yamaoka Y. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives. J Microbiol Biotechnol 2022; 32:1357-1372. [PMID: 36310359 PMCID: PMC9720082 DOI: 10.4014/jmb.2209.09012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Collapse
Affiliation(s)
- Sujeong Je
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yasuyo Yamaoka
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea,Corresponding author Phone: +82-2-2164-4034 Fax: +82-2-2164-4778 E-mail:
| |
Collapse
|
16
|
Mirzaei D, Jazini M, Rahimi M, Mahdieh M, Karimi K. Production of astaxanthin, ethanol and methane from Chromochloris zofingiensis microalga in an integrated biorefinery. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Parameswari RP, Lakshmi T. Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J Biotechnol 2022; 358:128-139. [PMID: 36122597 DOI: 10.1016/j.jbiotec.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022]
Abstract
Microalgae are highly photosynthetic unicellular organism that have increased demand in the recent days owing to the presence of valuable cellular metabolites. They are ubiquitous in terrestrial and aquatic habitats, rich in species diversity and are capable of generating significant biomass by efficiently using CO2, light and other nutrients like nitrogen, phosphate etc., The microalgal biomass has upsurged in economic potential and is used as both food and feed in many countries across the world, accounting for more than 75 % of annual microalgal biomass production in the past decades. The microalgal cells are sustainable resource that synthesize various secondary metabolites such as carotenoids, polysaccharides, polyphenols, essential amino acids, sterols, and polyunsaturated fatty acids (PUFA). Microalgae and its derived compounds possess significant pharmacological and biological effects such as antioxidant, anti-inflammatory, anti-cancer, immunomodulatory and anti-obesity. Because of their potential health promoting properties, the utilization of microalgae and its derived substances in food, pharmaceutical and cosmetic industries has skyrocketed in recent years. In this context, the current review discusses about the benefits of microalgae and its bioactive compounds against several neurodegenerative disorders like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- R P Parameswari
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Thangavelu Lakshmi
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India.
| |
Collapse
|
18
|
Optimization of Air Flotation and the Combination of Air Flotation and Membrane Filtration in Microalgae Harvesting. Processes (Basel) 2022. [DOI: 10.3390/pr10081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
On account of its small size and poor sedimentation performance, microalgae harvesting is restricted from a wider application. Air flotation is an efficient and fast solid–liquid separation technology, which has the potential to overcome the impediments of microalgae harvesting. In this study, factors influencing microalgae harvesting by air flotation were investigated. The results illustrated that bound extracellular organic matter (bEOM) had a greater effect on microalgae harvesting by air flotation, compared with dissolved extracellular organic matter (dEOM). Microalgae harvesting by air flotation in different growth stages proceeded, and the effect of air flotation in the heterotrophic stage was better than the autotrophic stage. The molecular weight distributions demonstrated that after air flotation, the proportion of high MW substance increased, while the proportion of low MW substance decreased, regardless of whether dEOM or bEOM. Membrane filtration was carried out for the algal solutions before and after air flotation. The membrane of pre-flotation algal solution had a higher critical flux of 51 L/m2·h than that of no-pre-flotation (24 L/m2·h), and, thus, pre-flotation had an active effect on membrane filtration in microalgae harvesting. Moreover, the combination of air flotation and membrane filtration provided an efficient technology for microalgae harvesting.
Collapse
|
19
|
Malaysian Virgin Soil Extracts as Natural Growth Enhancer for Targeted Green Microalgae Species. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The microalgae-based industries are trending upwards, particularly as the feed ingredient for aquaculture. Therefore, a sustainable and reasonably priced source of nutrients to support the mass cultivation of microalgae is in great demand. The present study explored the feasibility of using extracts from virgin soil as natural growth-promoting nutrients for the cultivation of Nannochloropsis oculata, Nannochloropsis oceanica, and Chlorella sorokiniana. The extracts were obtained from Bera Lake Forest using five different treatment methods. The greatest retrieval of dissolved organic carbon, total dissolved nitrogen, and total dissolved phosphorus were observed with the autoclave treatment method at 121 °C twice, yielding a respective concentration of 336.56 mg/L, 13.40 mg/L, and 0.14 mg/L, respectively. The highest growth was recorded with Nannochloropsis oculata resulting in an optical density of 0.488 ± 0.009 (×103 cell mL−1), exhibiting 43% and 44% enhanced growth in comparison to Nannochloropsis oceanica and Chlorella sorokiniana, respectively. The specific growth rate (0.114 a ± 0.007 d−1) was the highest for Nannochloropsis oculata when the 24 h-extraction method was used, whereas the utilization of the autoclave 121 °C twice treatment method contributed to the highest specific growth of Nannochloropsis ocenica (0.069 a ± 0.003 d−1) and Chlorella sorokiniana (0.080 a ± 0.001 d−1). Collectively, these findings suggested that the addition of soil extracts which is sustainable and inexpensive promoted the growth of microalgae compared to the control system. A further study investigating the optimum culture conditions for enhanced microalgae growth will be carried out for the mass production of microalgae biomass.
Collapse
|
20
|
Outflow from a Biogas Plant as a Medium for Microalgae Biomass Cultivation—Pilot Scale Study and Technical Concept of a Large-Scale Installation. ENERGIES 2022. [DOI: 10.3390/en15082912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microalgae-based technologies have huge potential for application in the environment sector and the bio-energy industry. However, their cost-efficiency has to be improved by drawing on design and operation data for large-scale installations. This paper presents a technical concept of an installation for large-scale microalgae culture on digestate liquor, and the results of a pilot-scale study to test its performance. The quality of non-treated digestate has been shown to be insufficient for direct use as a growth medium due to excess suspended solids, turbidity, and organic matter content, which need to be reduced. To that end, this paper proposes a system based on mechanical separation, flotation, and pre-treatment on a biofilter. The culture medium fed into photobioreactors had the following parameters after the processing: COD—340 mgO2/dm3, BOD5—100 mgO2/dm3, TN—900 mg/dm3, and TP—70 mg/dm3. The installation can produce approx. 720 kgVS/day of microalgal biomass. A membrane unit and a thickening centrifuge (thickener) were incorporated into the design to separate and dehydrate the microalgal biomass, respectively. The total energy consumption approximated 1870 kWh/day.
Collapse
|
21
|
Kholany M, Coutinho JAP, Ventura SPM. Carotenoid Production from Microalgae: The Portuguese Scenario. Molecules 2022; 27:2540. [PMID: 35458744 PMCID: PMC9030877 DOI: 10.3390/molecules27082540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/01/2023] Open
Abstract
Microalgae have an outstanding capacity to efficiently produce value-added compounds. They have been inspiring researchers worldwide to develop a blue biorefinery, supporting the development of the bioeconomy, tackling the environmental crisis, and mitigating the depletion of natural resources. In this review, the characteristics of the carotenoids produced by microalgae are presented and the downstream processes developed to recover and purify them are analyzed, considering their main applications. The ongoing activities and initiatives taking place in Portugal regarding not only research, but also industrialization under the blue biorefinery concept are also discussed. The situation reported here shows that new techniques must be developed to make microalgae production more competitive. Downstream pigment purification technologies must be developed as they may have a considerable impact on the economic viability of the process. Government incentives are needed to encourage a constructive interaction between academics and businesses in order to develop a biorefinery that focuses on high-grade chemicals.
Collapse
Affiliation(s)
| | | | - Sónia P. M. Ventura
- Chemistry Department, CICECO-Aveiro Institute of Materials, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (M.K.); (J.A.P.C.)
| |
Collapse
|
22
|
Chen Z, Chen Y, Zhang H, Qin H, He J, Zheng Z, Zhao L, Lei A, Wang J. Evaluation of Euglena gracilis 815 as a New Candidate for Biodiesel Production. Front Bioeng Biotechnol 2022; 10:827513. [PMID: 35402390 PMCID: PMC8990129 DOI: 10.3389/fbioe.2022.827513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Euglena comprises over 200 species, of which Euglena gracilis is a model organism with a relatively high fatty acid content, making it an excellent potential source of biodiesel. This study isolated and characterized a new strain named E. gracilis 815. E. gracilis 815 cells were cultivated under light and dark conditions, with either ethanol or glucose as an external carbon source and an autotrophic medium as control. To achieve maximum active substances within a short period i.e., 6 days, the effects of the light condition and carbon source on the accumulation of bioactive ingredients of E. gracilis 815 were explored, especially fatty acids. In comparison with the industrially used E. gracilis Z strain, E. gracilis 815 exhibited high adaptability to different carbon sources and light conditions, with a comparable biomass and lipid yield. The content and composition of fatty acids of E. gracilis 815 were further determined to assess its potential for biodiesel use. Results suggested that E. gracilis 815 has biodiesel potential under glucose addition in dark culture conditions and could be a promising source for producing unsaturated fatty acids. Therefore, E. gracilis 815 is a candidate for short-chain jet fuel, with prospects for a wide variety of applications.
Collapse
Affiliation(s)
- Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yehua Chen
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hua Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Academy of Environmental Science, Shenzhen, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zezhou Zheng
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresources and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Jiangxin Wang,
| |
Collapse
|
23
|
Sharma P, Gujjala LKS, Varjani S, Kumar S. Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152417. [PMID: 34923013 DOI: 10.1016/j.scitotenv.2021.152417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Industrial wastewater treatment is of paramount importance considering the safety of the aquatic ecosystem and its associated health risk to humankind inhabiting near the water bodies. Microalgae-based technologies for remediation of environmental pollutants present avenues for bioenergy applications and production of value-added biochemicals having pharmaceutical, nutraceutical, antioxidants, carbohydrate, phenolics, long-chain multi-faceted fatty acids, enzymes, and proteins which are considered healthy supplements for human health. Such a wide range of products put up a good case for the biorefinery concept. Microalgae play a pivotal role in degrading complex pollutants, such as organic and inorganic contaminants thereby efficiently removing them from the environment. In addition, microalgal species, such as Botryococcus braunii, Tetraselmis suecica, Phaeodactylum tricornutum, Neochloris oleoabundans, Chlorella vulgaris, Arthrospira, Chlorella, and Tetraselmis sp., etc., are also reported for generation of value-added products. This review presents a holistic view of microalgae based biorefinery starting from cultivation and harvesting of microalgae, the potential for remediation of environmental pollutants, bioenergy application, and production of value-added biomolecules. Further, it summarizes the current understanding of microalgae-based technologies and discusses the risks involved, potential for bioeconomy, and outlines future research directions.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | | | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
24
|
Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
From 2015 to 2021, we optimized mass cultivation of diatoms in our own developed vertical column airlift photobioreactors using natural and artificial light (LEDs). The project took place at the ferrosilicon producer Finnfjord AS in North Norway as a joint venture with UiT—The Arctic University of Norway. Small (0.1–6–14 m3) reactors were used for initial experiments and to produce inoculum cultures while upscaling experiments took place in a 300 m3 reactor. We here argue that species cultivated in reactors should be large since biovolume specific self-shadowing of light can be lower for large vs. small cells. The highest production, 1.28 cm3 L−1 biovolume (0.09–0.31 g DW day−1), was obtained with continuous culture at ca. 19% light utilization efficiency and 34% CO2 uptake. We cultivated 4–6 months without microbial contamination or biofouling, and this we argue was due to a natural antifouling (anti-biofilm) agent in the algae. In terms of protein quality all essential amino acids were present, and the composition and digestibility of the fatty acids were as required for feed ingredients. Lipid content was ca. 20% of ash-free DW with high EPA levels, and omega-3 and amino acid content increased when factory fume was added. The content of heavy metals in algae cultivated with fume was well within the accepted safety limits. Organic pollutants (e.g., dioxins and PCBs) were below the limits required by the European Union food safety regulations, and bioprospecting revealed several promising findings.
Collapse
|
25
|
Russell C, Rodriguez C, Yaseen M. High-value biochemical products & applications of freshwater eukaryotic microalgae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151111. [PMID: 34695461 DOI: 10.1016/j.scitotenv.2021.151111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
A shift in public perception of the health and nutritional benefits of organic supplements and skin care products has led to a surge in high-value products being extracted from microalgae. Traditional forms of microalgae products were proteins, lipids and carbohydrates. However, in recent times the extraction of carotenoids (pigments), polyunsaturated acids (PUFAs), vitamins, phytosterols and polyphenols has increased significantly. Despite the diversity of products most research has failed to scale up production to industrial scale due to economic constraints and productivity capacities. It is clear that the main market drivers are the pharmaceutical and nutraceutical industries. This paper reviews the high-value products produced from freshwater eukaryotic microalgae. In addition, the paper also considers the biochemical properties of eukaryotic microalgae to provide a comparative analysis of different strains based on their high-value product content.
Collapse
Affiliation(s)
- Callum Russell
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Cristina Rodriguez
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK.
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| |
Collapse
|
26
|
Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. ENERGIES 2022. [DOI: 10.3390/en15041550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Research progress on sustainable and renewable biofuel has gained motion over the years, not just due to the rapid reduction of dwindling fossil fuel supplies but also due to environmental and potential energy security issues as well. Intense interest in microalgae (photosynthetic microbes) as a promising feedstock for third-generation biofuels has grown over recent years. Fuels derived from algae are now considered sustainable biofuels that are promising, renewable, and clean. Therefore, selecting the robust species of microalgae with substantial features for quality biodiesel production is the first step in the way of biofuel production. A contemporary investigation is more focused on several strategies and techniques to achieve higher biomass and triglycerides in microalgae. The improvement in lipid enhancement in microalgae species by genetic manipulation approaches, such as metabolic or genetic alteration, and the use of nanotechnology are the most recent ways of improving the production of biomass and lipids. Hence, the current review collects up-to-date approaches for microalgae lipid increase and biodiesel generation. The strategies for high biomass and high lipid yield are discussed. Additionally, various pretreatment procedures that may aid in lipid harvesting efficiency and improve lipid recovery rate are described.
Collapse
|
27
|
Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. WATER 2022. [DOI: 10.3390/w14040558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of pesticides in agriculture has ensured the production of different crops. However, pesticides have become an emerging public health problem for Latin American countries due to their excessive use, inadequate application, toxic characteristics, and minimal residue control. The current project evaluates the ability of two strains of algae (Chlorella and Scenedesmus sp.) and one cyanobacteria (Hapalosyphon sp.) to remove excess pesticides and other nutrients present in runoff water from rice production. Different concentrations of wastewater and carbon sources (Na2CO3 and NaHCO3) were evaluated. According to the results, all three strains can be grown in wastewater without dilution (100%), with a biomass concentration comparable to a synthetic medium. All three strains significantly reduced the concentration of NO3 and PO4 (95 and 85%, respectively), with no difference between Na2CO3 or NaHCO3. Finally, Chlorella sp. obtained the highest removal efficiency of the pesticide (Chlorpyrifos), followed by Scenedesmus and Hapalosyphon sp. (100, 75, and 50%, respectively). This work shows that it is possible to use this type of waste as an alternative source of nutrients to obtain biomass and metabolites of interest, such as lipids and carbohydrates, to produce biofuels.
Collapse
|
28
|
Arthrospira platensis Cultivation in a Bench-Scale Helical Tubular Photobioreactor. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cultivations of Arthrospira platensis were carried out to evaluate the CO2 capture capacity of this cyanobacterium under bench-scale conditions. For this purpose, the influence of light intensity on the microbial growth and the photosynthetic efficiency has been investigated in a helical photobioreactor. Five cultivations were performed at different photosynthetic photon flux densities (23 ≤ PPFD ≤ 225 µmol photons m−2 s−1) by fed-batch pulse-feeding pure carbon dioxide from a cylinder into the helicoidal photobioreactor. In particular, a range of PPFD (82–190 µmol photons m−2 s−1) was identified in which biomass concentration reached values (9–11 gDW L−1) significantly higher than those reported in the literature for other configurations of closed photobioreactors. Furthermore, as A. platensis suspensions behave as Newtonian and non-Newtonian (pseudoplastic) fluids at very low and high biomass concentrations, respectively, a flow analysis was carried out for evaluating the most suitable mixing conditions depending on growth. The results obtained in this study appear to be very promising and suggest the use of this helicoidal photobioreactor configuration to reduce CO2 emissions from industrial gaseous effluents.
Collapse
|
29
|
Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in Anaerobic Digestion Effluent. WATER 2022. [DOI: 10.3390/w14020221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Four microalgae species were evaluated for their bioremediation capacity of anaerobic digestion effluent (ADE) rich in ammonium nitrogen, derived from a biogas plant. Chlorella vulgaris, Chlorella sorokiniana, Desmodesmus communis and Stichococcus sp. were examined for their nutrient assimilation efficiency, biomass production and composition through their cultivation in 3.7% v/v ADE; their performance was compared with standard cultivation media which consisted in different nitrogen sources, i.e., BG-11NO3 and BG-11ΝH4 where N-NO3 was replaced by N-NH4. The results justified ammonium as the most preferable source of nitrogen for microalgae growth. Although Stichococcus sp. outperformed the other 3 species in N-NH4 removal efficiency both in BG-11NH4 and in 3.7% ADE (reaching up to 90.79% and 69.69% respectively), it exhibited a moderate biomass production when it was cultivated in diluted ADE corresponding to 0.59 g/L, compared to 0.89 g/L recorded by C. vulgaris and 0.7 g/L by C. sorokiniana and D. communis. Phosphorus contained in the effluent and in the control media was successfully consumed by all of the species, although its removal rate was found to be affected by the type of nitrogen source used and the particular microalgae species. The use of ADE as cultivation medium resulted in a significant increase in carbohydrates content in all investigated species.
Collapse
|
30
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
31
|
Santin A, Russo MT, Ferrante MI, Balzano S, Orefice I, Sardo A. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture. Molecules 2021; 26:7697. [PMID: 34946780 PMCID: PMC8707597 DOI: 10.3390/molecules26247697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs' production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs' accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs' profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs' extraction and purification from microalgal biomass.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Monia Teresa Russo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Maria Immacolata Ferrante
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Sergio Balzano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Department of Marine Microbiology and Biogeochemistry, Netherland Institute for Sea Research, Landsdiep 4, 1793 AB Texel, The Netherlands
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
| | - Angela Sardo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (A.S.); (M.T.R.); (S.B.); (I.O.)
- Istituto di Scienze Applicate e Sistemi Intelligenti “Eduardo Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
32
|
Microalgae potential in the capture of CO2 emission. ACTA INNOVATIONS 2021. [DOI: 10.32933/actainnovations.41.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a perspective projected to reduce the atmospheric concentration of greenhouse gases, in which carbon dioxide is the master, the use of microalgae is an effective and decisive response. The review describes the bio circularity of the process of abatement of carbon dioxide through biofixation in algal biomass, highlighting the potential of its reuse in the production of high value-added products.
Collapse
|
33
|
Phalanisong P, Plangklang P, Reungsang A. Photoautotrophic and Mixotrophic Cultivation of Polyhydroxyalkanoate-Accumulating Microalgae Consortia Selected under Nitrogen and Phosphate Limitation. Molecules 2021; 26:7613. [PMID: 34946700 PMCID: PMC8705517 DOI: 10.3390/molecules26247613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Microalgae consortia were photoautotrophically cultivated in sequencing batch photobioreactors (SBPRs) with an alteration of the normal growth and starvation (nutrient limitation) phases to select consortia capable of polyhydroxyalkanoate (PHA) accumulation. At the steady state of SBPR operation, the obtained microalgae consortia, selected under nitrogen and phosphate limitation, accumulated up to 11.38% and 10.24% of PHA in their biomass, which was identified as poly(3-hydroxybutyrate) (P3HB). Photoautotrophic and mixotrophic batch cultivation of the selected microalgae consortia was conducted to investigate the potential of biomass and PHA production. Sugar source supplementation enhanced the biomass and PHA production, with the highest PHA contents of 10.94 and 6.2%, and cumulative PHA productions of 100 and 130 mg/L, with this being achieved with sugarcane juice under nitrogen and phosphate limitation, respectively. The analysis of other macromolecules during batch cultivation indicated a high content of carbohydrates and lipids under nitrogen limitation, while higher protein contents were detected under phosphate limitation. These results recommended the selected microalgae consortia as potential tools for PHA and bioresource production. The mixed-culture non-sterile cultivation system developed in this study provides valuable information for large-scale microalgal PHA production process development following the biorefinery concept.
Collapse
Affiliation(s)
- Parichat Phalanisong
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.P.)
| | - Pensri Plangklang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.P.)
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; (P.P.); (P.P.)
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
34
|
Veerabadhran M, Natesan S, MubarakAli D, Xu S, Yang F. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. CHEMOSPHERE 2021; 285:131436. [PMID: 34256200 DOI: 10.1016/j.chemosphere.2021.131436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Microalgal biomass and its fine chemical production from microalgae have pioneered algal bioprocess technology with few limitations such as lab-to-industry. However, laboratory-scale transitions and industrial applications are hindered by a plethora of limitations comprising expensive in culturing methods. Therefore, to emphasize the profitable benefits, the algal culturing techniques appropriately employed for large-scale microalgal biomass yield necessitates intricate assessment to emphasize the profitable benefits. The present review holistically compiles the culturing strategies for improving microalgal biomass production based on appropriate factors like designing better bioreactor designs. On the other hand, synthetic biology approaches for abridging the effective industrial transition success explored recently. Prospects in synthetic biology for enhanced microalgal biomass production based on cultivation strategies and various mechanistic modes approach to enrich cost-effective and viable output are discussed. The State-of-the-art culturing techniques encompassing enhancement of photosynthetic activity, designing bioreactor design, and potential augmenting protocols for biomass yield employing indoor cultivation in both (Open and or/closed) methods are enumerated. Further, limitations hindering the microalgal bioproducts development are critically evaluated for improving culturing techniques for microalgal cell factories, subsequently escalating the cost-benefit ratio in bioproducts synthesis from microalgae. The comprehensive analysis could provide a rational and deeper detailed insight for microalgal entrepreneurs through alternative culturing technology viz., synthetic biology and genome engineering in an Industrial perspective arena.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
35
|
A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment. ENERGIES 2021. [DOI: 10.3390/en14227687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microalgae are unicellular photosynthetic eukaryotes that can treat wastewater and provide us with biofuel. Microalgae cultivation utilizing wastewater is a promising approach for synchronous wastewater treatment and biofuel production. However, previous studies suggest that high microalgae biomass production reduces lipid production and vice versa. For cost-effective biofuel production from microalgae, synchronous lipid and biomass enhancement utilizing wastewater is necessary. Therefore, this study brings forth a comprehensive review of synchronous microalgal lipid and biomass enhancement strategies for biofuel production and wastewater treatment. The review emphasizes the appropriate synergy of the microalgae species, culture media, and synchronous lipid and biomass enhancement conditions as a sustainable, efficient solution.
Collapse
|
36
|
Ferdous UT, Balia Yusof ZN. Insight into Potential Anticancer Activity of Algal Flavonoids: Current Status and Challenges. Molecules 2021; 26:molecules26226844. [PMID: 34833937 PMCID: PMC8618413 DOI: 10.3390/molecules26226844] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Flavonoids are some of the most precious phytochemicals, believed to be found largely in terrestrial plants. With the advancement of phytochemical research and marine bioprospecting, flavonoids have also been reported by the research of microalgae and macroalgae. High growth rate with minimal nutritional and growth requirement, saving arable land and rich metabolic profile make microalgae an excellent repertoire of novel anticancer compounds, such as flavonoids. In addition, marine algae, especially seaweeds contain different types of flavonoids which are assumed to have unique chemical structures and bioactivities than their terrestrial counterparts. Flavonoids are not only good antioxidants but also have the abilities to kill cancer cells by inducing apoptosis and autophagy. However, the study of the anticancer properties of flavonoids is largely limited to terrestrial plants. This review offers an insight into the distribution of different classes of flavonoids in eukaryotic microalgae, cyanobacteria and seaweeds with their possible anticancer activities. In addition, extraction and purification methods of these flavonoids have been highlighted. Finally, prospects and challenges to use algal flavonoids as anticancer agents have been discussed.
Collapse
Affiliation(s)
- Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Zetty Norhana Balia Yusof
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Complex (BBRC), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-397696712
| |
Collapse
|
37
|
Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae-derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol 2021; 62:1044-1063. [PMID: 34766645 DOI: 10.1002/jobm.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are regarded as a rich trove of diverse secondary metabolites that exert remarkable biological activities. In particular, microalgae-derived bioactive phenolic compounds (MBPCs) are a boon to biopharmaceutical and nutraceutical industries due to their diverse bioactivities, including antimicrobial, anticancer, antiviral, and immunomodulatory activities. The state-of-the-art green technologies for extraction and purification of MBPCs, along with the modern progress in the identification and characterization of MBPCs, have accelerated the discovery of novel active pharmaceutical compounds. However, several factors regulate the production of these bioactive phenolic compounds in microalgae. Furthermore, some microalgae species produce toxic phenolic compounds that negatively impact the aquatic ecosystem, animal, and human life. Therefore, the focus of this review paper is to bring into light the current innovations in bioprospection, extraction, purification, and characterization of MBPCs. This review is also aimed at a better understanding of the physicochemical factors regulating the production of MBPCs at an industrial scale. Finally, the present review covers the recent advances in toxicological evaluation, diverse applications, and future prospects of MBPCs in biopharmaceutical industries.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Botany, Goswami Ganesh Dutta S.D. College, Chandigarh, India
| | - Meenakshi Singh
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Ecology & Biodiversity, Terracon Ecotech Pvt. Ltd., Mumbai, Maharashtra, India
| | - Atul Srivastava
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Science & Technology, Alliance University (Central Campus), Bengaluru, Karnataka, India.,NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur, Andhra Pradesh, India
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
38
|
Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review. ENERGIES 2021. [DOI: 10.3390/en14196025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. So far, hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Collapse
|
39
|
A Comparative Study of Improvement of Phycoremediation Using a Consortium of Microalgae in Municipal Wastewater Treatment Pond Systems as an Alternative Solution to Africa’s Sanitation Challenges. Processes (Basel) 2021. [DOI: 10.3390/pr9091677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The reuse of wastewater has been observed as a viable option to cope with increasing water stress in Africa. The present case studies evaluated the optimization of the process of phycoremediation as an alternative low-cost green treatment technology in two municipality wastewater treatment pond systems that make up the largest number of domestic sewage treatment systems on the African continent. A consortium of specific microalgae (Chlorella vulgaris and Chlorella protothecoides) was used to improve the treatment capacity of domestic wastewater at two operational municipality wastewater pond systems under different environmental conditions in South Africa. Pre- and post-phycoremediation optimization through mass inoculation of a consortium of microalgae, over a period of one year under different environmental conditions, were compared. It was evident that the higher reduction of total phosphates (74.4%) in the effluent, after treatment with a consortium of microalgae at the Motetema pond system, was possibly related to (1) the dominance of the algal taxa C. protothecoides (52%), and to a lesser extent C. vulgaris (36%), (2) more cloudless days, (3) higher air temperature, and (4) a higher domestic wastewater strength. In the case of the Brandwag pond treatment system, the higher reduction of total nitrogen can possibly be related to the dominance of C. vulgaris, different weather conditions, and lower domestic wastewater strength. The nutrient reduction data from the current study clearly presented compelling evidence in terms of the feasibility for use of this technology in developing countries to reduce nutrient loads from domestic wastewater effluent.
Collapse
|
40
|
A Comparative Analysis of Emissions from a Compression–Ignition Engine Powered by Diesel, Rapeseed Biodiesel, and Biodiesel from Chlorella protothecoides Biomass Cultured under Different Conditions. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The priority faced by energy systems in road transport is to develop and implement clean technologies. These actions are expected to reduce emissions and slow down climate changes. An alternative in this case may be the use of biodiesel produced from microalgae. However, its production and use need to be justified economically and technologically. The main objective of this study was to determine the emissions from an engine powered by biodiesel produced from the bio-oil of Chlorella protothecoides cultured with different methods, i.e., using a pure chemical medium (BD-ABM) and a medium based on the effluents from an anaerobic reactor (BD-AAR). The results obtained were compared to the emissions from engines powered by conventional biodiesel from rapeseed oil (BD-R) and diesel from crude oil (D-CO). The use of effluents as a medium in Chlorella protothecoides culture had no significant effect on the properties of bio-oil nor the composition of FAME. In both cases, octadecatrienoic acid proved to be the major FAME (50% wt/wt), followed by oleic acid (ca. 22%) and octadecadienoic acid (over 15%). The effluents from UASB were found to significantly reduce the biomass growth rate and lipid content of the biomass. The CO2 emissions were comparable for all fuels tested and increased linearly along with an increasing engine load. The use of microalgae biodiesel resulted in a significantly lower CO emission compared to the rapeseed biofuel and contributed to lower NOx emission. Regardless of engine load tested, the HC emission was the highest in the engine powered by diesel. At low engine loads, it was significantly lower when the engine was powered by microalgae biodiesel than by rapeseed biodiesel.
Collapse
|
41
|
Immobilized Microalgae-Based Photobioreactor for CO2 Capture (IMC-CO2PBR): Efficiency Estimation, Technological Parameters, and Prototype Concept. ATMOSPHERE 2021. [DOI: 10.3390/atmos12081031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microalgae-mediated CO2 sequestration has been a subject of numerous research works and has become one of the most promising strategies to mitigate carbon dioxide emissions. However, feeding flue and exhaust gas into algae-based systems has been shown to destroy chloroplasts, as well as disrupt photosynthesis and other metabolic processes in microalgae, which directly limits CO2 uptake. CO2 biosequestration in existing photobioreactors (PBRs) is also limited by the low biomass concentration in the growth medium. Therefore, there is a real need to seek alternative solutions that would be competitive in terms of performance and cost-effectiveness. The present paper reports the results of experiments aimed to develop an innovative trickle bed reactor that uses immobilized algae to capture CO2 from flue and exhaust gas (IMC-CO2PBR). In the experiment, ambient air enriched with technical-grade CO2 to a CO2 concentration of 25% v/v was used. The microalgae immobilization technology employed in the experiment produced biomass yields approximating 100 g DM/dm3. A relationship was found between CO2 removal rates and gas volume flux: almost 40% of CO2 was removed at a feed of 25 dm3 of gas per hour, whereas in the 200 dm3/h group, the removal efficiency amounted to 5.9%. The work includes a determination of basic process parameters, presentation of a developed functional model and optimized lighting system, proposals for components to be used in the system, and recommendations for an automation and control system for a full-scale implementation.
Collapse
|
42
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
43
|
Scaling-Up and Semi-Continuous Cultivation of Locally Isolated Marine Microalgae Tetraselmis striata in the Subtropical Island of Gran Canaria (Canary Islands, Spain). Processes (Basel) 2021. [DOI: 10.3390/pr9081326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The goal of this study was to determine the feasibility of the large-scale cultivation of locally isolated Tetraselmis striata in different open ponds in Gran Canaria. The biomass productivities were 24.66 ± 0.53 kgDW in 32 days (28.9 t/ha/year) for 8000 L indoors, 42.32 ± 0.81 kgDW in 43 days (38.8 t/ha/year) for an 8000 L pond outdoors, and 54.9 ± 0.58 kgDW in 28 days (19.6 t/ha/year) for a 45,000 L pond outdoors. The photosynthetic efficiencies were 1.45 ± 0.03% for an 8000 L pond indoors, 1.95 ± 0.04% for 8000 L outdoors. and 1.10 ± 0.01% for a 45,000 L pond outdoors. The selected strain was fast-growing (µ = 0.21 day−1) and could be rapidly scaled up to 45,000 L; it formed healthy cultures that maintained high photosynthetic activity during long-term cultivation and provided stable biomass productivities, able to grow on urea, which acted as a cheap and effective grazer control. The obtained biomass is a good source of proteins and has an FA profile with a high content of some nutritionally important fatty acids: oleic, α-linolenic (ALA) and EPA. The high ash content in the biomass (>35%) can be reduced by the implementation of additional washing steps after the centrifugation of the culture.
Collapse
|
44
|
The Role of Heterotrophic Microalgae in Waste Conversion to Biofuels and Bioproducts. Processes (Basel) 2021. [DOI: 10.3390/pr9071090] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last few decades, microalgae have attracted attention from the scientific community worldwide, being considered a promising feedstock for renewable energy production, as well as for a wide range of high value-added products such as pigments and poly-unsaturated fatty acids for pharmaceutical, nutraceutical, food, and cosmetic markets. Despite the investments in microalgae biotechnology to date, the major obstacle to its wide commercialization is the high cost of microalgal biomass production and expensive product extraction steps. One way to reduce the microalgae production costs is the use of low-cost feedstock for microalgae production. Some wastes contain organic and inorganic components that may serve as nutrients for algal growth, decreasing the culture media cost and, thus, the overall process costs. Most of the research studies on microalgae waste treatment use autotrophic and mixotrophic microalgae growth. Research on heterotrophic microalgae to treat wastes is still scarce, although this cultivation mode shows several benefits over the others, such as higher organic carbon load tolerance, intracellular products production, and stability in production all year round, regardless of the location and climate. In this review article, the use of heterotrophic microalgae to simultaneously treat wastes and produce high value-added bioproducts and biofuels will be discussed, critically analyzing the most recent research done in this area so far and envisioning the use of this approach to a commercial scale in the near future.
Collapse
|
45
|
Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. SUSTAINABILITY 2021. [DOI: 10.3390/su13126962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Managing the concentration of atmospheric CO2 requires a multifaceted engineering strategy, which remains a highly challenging task. Reducing atmospheric CO2 (CO2R) by converting it to value-added chemicals in a carbon neutral footprint manner must be the ultimate goal. The latest progress in CO2R through either abiotic (artificial catalysts) or biotic (natural enzymes) processes is reviewed herein. Abiotic CO2R can be conducted in the aqueous phase that usually leads to the formation of a mixture of CO, formic acid, and hydrogen. By contrast, a wide spectrum of hydrocarbon species is often observed by abiotic CO2R in the gaseous phase. On the other hand, biotic CO2R is often conducted in the aqueous phase and a wide spectrum of value-added chemicals are obtained. Key to the success of the abiotic process is understanding the surface chemistry of catalysts, which significantly governs the reactivity and selectivity of CO2R. However, in biotic CO2R, operation conditions and reactor design are crucial to reaching a neutral carbon footprint. Future research needs to look toward neutral or even negative carbon footprint CO2R processes. Having a deep insight into the scientific and technological aspect of both abiotic and biotic CO2R would advance in designing efficient catalysts and microalgae farming systems. Integrating the abiotic and biotic CO2R such as microbial fuel cells further diversifies the spectrum of CO2R.
Collapse
|
46
|
Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, Manning SR. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol 2021; 12:76. [PMID: 34134776 PMCID: PMC8359609 DOI: 10.1186/s40104-021-00593-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.
Collapse
Affiliation(s)
- Imen Saadaoui
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar.
| | - Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Ana Aguilar
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maroua Cherif
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
47
|
Abdullah MA, Hussein HA. Integrated algal and oil palm biorefinery as a model system for bioenergy co-generation with bioproducts and biopharmaceuticals. BIORESOUR BIOPROCESS 2021; 8:40. [PMID: 38650258 PMCID: PMC10992906 DOI: 10.1186/s40643-021-00396-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There has been a greater call for greener and eco-friendly processes and bioproducts to meet the 2030's core agenda on 17 global sustainable development goals. The challenge lies in incorporating systems thinking with a comprehensive worldview as a guiding principle to develop the economy, whilst taking cognisance of the need to safeguard the environment, and to embrace the socio-cultural diversity dimension as an equal component. Any discussion on climate change, destruction of eco-system and habitat for wildlife, poverty and starvation, and the spread of infectious diseases, must be addressed together with the emphasis on the development of cleaner energy, air and water, better management of resources and biodiversity, improved agro-practices for food production and distribution, and affordable health care, as the outcomes and key performance indicators to be evaluated. Strict regulation, monitoring and enforcement to minimize emission, pollution and wastage must also be put in place. CONCLUSION This review article focuses on the research and development efforts to achieve sustainable bioenergy production, environmental remediation, and transformation of agro-materials into value-added bioproducts through the integrated algal and oil palm biorefinery. Recent development in microalgal research with nanotechnology as anti-cancer and antimicrobial agents and for biopharmaceutical applications are discussed. The life-cycle analysis in the context of palm oil mill processes is evaluated. The way forward from this integrated biorefinery concept is to strive for inclusive development strategies, and to address the immediate and pressing problems facing the Planet and the People, whilst still reaping the Profit.
Collapse
Affiliation(s)
- Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | | |
Collapse
|
48
|
Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13063247] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palm oil mill effluent (POME) is the wastewater produced during the palm oil sterilization process, which contains substantial amounts of nutrients and phosphorous that are harmful to the environment. High BOD and COD of POME are as high as 100,000 mg/L, which endanger the environment. Effective pre-treatment of POME is required before disposal. As microalgae have the ability of biosorption on nutrients and phosphorous to perform photosynthesis, they can be utilized as a sustainable POME treatment operation, which contributes to effective biofuel production. Microalgae species C. pyrenoidosa has shown to achieve 68% lipid production along with 71% nutrient reduction in POME. In this study, a brief discussion about the impacts of POME that will affect the environment is presented. Additionally, the potential of microalgae in treating POME is evaluated along with its benefits. Furthermore, the condition of microalgae growth in the POME is also assessed to study the suitable condition for microalgae to be cultivated in. Moreover, experimental studies on characteristics and performance of microalgae are being evaluated for their feasibility. One of the profitable applications of POME treatment using microalgae is biofuel production, which will be discussed in this review. However, with the advantages brought from cultivating microalgae in POME, there are also some concerns, as microalgae will cause pollution if they are not handled well, as discussed in the last section of this paper.
Collapse
|
49
|
Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions. ENERGIES 2021. [DOI: 10.3390/en14051246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Energy-storage metabolites such as neutral lipids and carbohydrates are valuable compounds for liquid biofuel production. The aim of this work is to elucidate the main biological responses of two algae species known for their effective energy-rich compound accumulation in nitrogen limitation and day–night cycles: Nannochloropsis gaditana, a seawater species, and Parachlorella kessleri, a freshwater species. Lipid and carbohydrate production are investigated, as well as cell resistance to mechanical disruption for energy-rich compound release. Nitrogen-depleted N. gaditana showed only a low consumption of energy-storage molecules with a non-significant preference for neutral lipids (TAG) and carbohydrates in day–night cycles. However, it did accumulate significantly fewer carbohydrates than P. kessleri. Following this, the highest levels of productivity for N. gaditana in chemostat cultures at four levels of nitrogen limitation were found to be 3.4 and 2.2 × 10−3 kg/m2·d for carbohydrates and TAG, respectively, at 56%NO3 limitation. The cell disruption rate of N. gaditana decreased along with nitrogen limitation, from 75% (at 200%NO3) to 17% (at 13%NO3). In the context of potentially recoverable energy for biofuels, P. kessleri showed good potential for biodiesel and high potential for bioethanol; by contrast, N. gaditana was found to be more efficient for biodiesel production only.
Collapse
|