1
|
Mohammad A, Srivastava M, Ahmad I, Singh R, Deen PR, Rai A, Lal B, Srivastava N, Gupta VK. Prospects of graphene quantum dots preparation using lignocellulosic wastes for application in photofermentative hydrogen production. CHEMOSPHERE 2024:142804. [PMID: 39029708 DOI: 10.1016/j.chemosphere.2024.142804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/06/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
Graphene quantum dots (GQDs) are a novel carbon nanomaterial from the graphene family due to their unique physicochemical properties and diverse range of applications. However, in terms of the sustainable utility of GQDs, their synthesis methods are the main roadblock because of their high production costs and the release of toxic byproducts during the production processes. Thus, the search for sustainable and economical fabrication methods for preparing GQDs is one of the most essential areas of research for their practical applications. In this context, lignocellulosic biomass (LCB) wastes are a prime choice for the fabrication of GQDs due to their high carbon and cellulose content, which are favorable for being employed as precursors and reducing agents Additionally, LCBs are a prime source of potential bioenergy production, which is currently a key research hotspot to combat environmental pollution, global warming, and energy crises. Therefore, the present review provides feasibility for sustainable and environmentally friendly fabrication of GQDs using LCB wastes for their possible utility in cellulosic biofuel production technology improvement. Furthermore, the prospective of using these GQDs as catalysts in bioenergy production for the development of low-cost biomass-based biofuel production technology has been discussed along with the existing limitations and their sustainable recommendation.
Collapse
Affiliation(s)
- Akbar Mohammad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Manish Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Irfan Ahmad
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Rajeev Singh
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Prakash Ranjan Deen
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Ashutosh Rai
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Basant Lal
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Neha Srivastava
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
| | - Vijai Kumar Gupta
- Biorefining and Advance Material Research Center, Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, United Kingdom.
| |
Collapse
|
2
|
Mutukwa D, Taziwa RT, Khotseng L. A Review of Plant-Mediated ZnO Nanoparticles for Photodegradation and Antibacterial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1182. [PMID: 39057861 PMCID: PMC11279911 DOI: 10.3390/nano14141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
This review focuses on the synthesis of plant-mediated zinc oxide nanoparticles (ZnO NPs) and their applications for antibacterial and photocatalytic degradation of dyes, thereby addressing the need for sustainable and eco-friendly methods for the preparation of NPs. Driven by the significant rise in antibiotic resistance and environmental pollution from dye pollution, there is a need for more effective antibacterial agents and photocatalysts. Therefore, this review explores the synthesis of plant-mediated ZnO NPs, and the influence of reaction parameters such as pH, annealing temperature, plant extract concentration, etc. Additionally, it also looks at the application of plant-mediated ZnO NPs for antibacterial and photodegradation of dyes, focusing on the influence of the properties of the plant-mediated ZnO NPs such as size, shape, and bandgap on the antibacterial and photocatalytic activity. The findings suggest that properties such as shape and size are influenced by reaction parameters and these properties also influence the antibacterial and photocatalytic activity of plant-mediated ZnO NPs. This review concludes that plant-mediated ZnO NPs have the potential to advance green and sustainable materials in antibacterial and photocatalysis applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| | - Raymond Tichaona Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
3
|
Bokobza L. On the Use of Nanoparticles in Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3191. [PMID: 38998274 PMCID: PMC11242106 DOI: 10.3390/ma17133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone-implant interfacial area. Surface coatings via the sol-gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
4
|
Schneider B, Ornaghi Jr. HL, Monticeli FM, Romanzini D. Effect of the Graphene Quantum Dot Content on the Thermal, Dynamic-Mechanical, and Morphological Properties of Epoxy Resin. Polymers (Basel) 2023; 15:4531. [PMID: 38231951 PMCID: PMC10708301 DOI: 10.3390/polym15234531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Different amounts of graphene quantum dots (CQDs) (0, 1, 2.5, and 5 wt%) were incorporated into an epoxy matrix. The thermal conductivity, density, morphology, and dynamic mechanical thermal (DMTA) properties were reused from the study of Seibert et al.. The Pearson plot showed a high correlation between mass loading, thermal conductivity, and thermal diffusivity. A poorer correlation with density and heat capacity was observed. At lower CQD concentrations (0.1 wt%), the fracture surface showed to be more heterogeneous, while at higher amounts (2.5 and 5 wt%), a more homogeneous surface was observed. The storage modulus values did not change with the CQD amount. But the extension of the glassy plateau increased with higher CQD contents, with an increase of ~40 °C for the 5 wt% compared to the 2.5 wt% and almost twice compared to the neat epoxy. This result is attributed to the intrinsic characteristics of the filler. Additionally, lower energy dissipation and a higher glass transition temperature were observed with the CQD amount. The novelty and importance are related to the fact that for more rigid matrices (corroborated with the literature), the mechanical properties did not change, because the polymer bridging mechanism was not present, in spite of the excellent CQD dispersion as well as the filler amount. On the other hand, thermal conductivity is directly related to particle size and dispersion.
Collapse
Affiliation(s)
- Bárbara Schneider
- Mantova Indústria de Tubos Plásticos Ltd.a., Rua Archimedes Manenti, 574, B. Centenário, Caxias do Sul 950450-175, RS, Brazil;
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| | - Heitor Luiz Ornaghi Jr.
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| | - Francisco Maciel Monticeli
- Department of Aerospace Structures and Materials, Delft University of Technology, Mekelweg 5, 2628 CD Delft, The Netherlands
| | - Daiane Romanzini
- Postgraduate Program in Technology and Materials Engineering (PPGTEM), Federal Institute of Education, Science and Technology of Rio Grande do Sul (IFRS), R. Princesa Isabel, 60, Feliz 95770-000, RS, Brazil; (H.L.O.J.); (D.R.)
| |
Collapse
|
5
|
Das T, Das S, Kumar P, C A B, Mandal D. Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies. NANOSCALE 2023; 15:17861-17878. [PMID: 37885430 DOI: 10.1039/d3nr04259f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with εmax ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The Km for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD (Kd of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Collapse
Affiliation(s)
- Tushar Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Subrata Das
- Department of Chemistry, National Institute of Technology Patna, Bihar 800005, India.
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| | - Betty C A
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400085, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Hajipur, Vaishali 844102, India.
| |
Collapse
|
6
|
Zhu X, Li Y, Cao P, Li P, Xing X, Yu Y, Guo R, Yang H. Recent Advances of Graphene Quantum Dots in Chemiresistive Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2880. [PMID: 37947725 PMCID: PMC10647816 DOI: 10.3390/nano13212880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Graphene quantum dots (GQDs), as 0D graphene nanomaterials, have aroused increasing interest in chemiresistive gas sensors owing to their remarkable physicochemical properties and tunable electronic structures. Research on GQDs has been booming over the past decades, and a number of excellent review articles have been provided on various other sensing principles of GQDs, such as fluorescence-based ion-sensing, bio-sensing, bio-imaging, and electrochemical, photoelectrochemical, and electrochemiluminescence sensing, and therapeutic, energy and catalysis applications. However, so far, there is no single review article on the application of GQDs in the field of chemiresistive gas sensing. This is our primary inspiration for writing this review, with a focus on the chemiresistive gas sensors reported using GQD-based composites. In this review, the various synthesized strategies of GQDs and its composites, gas sensing enhancement mechanisms, and the resulting sensing characteristics are presented. Finally, the current challenges and future prospects of GQDs in the abovementioned application filed have been discussed for the more rational design of advanced GQDs-based gas-sensing materials and innovative gas sensors with novel functionalities.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yongzhen Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Pei Cao
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Peng Li
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Xinzhu Xing
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Yue Yu
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Ruihua Guo
- Institute for Smart Ageing, Beijing Academy of Science and Technology, Beijing 100089, China; (Y.L.); (P.C.); (P.L.); (X.X.); (Y.Y.)
| | - Hui Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
7
|
Zhang J, Zou L, Li Q, Wu H, Sun Z, Xu X, Shi L, Sun Z, Ma G. Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS APPLIED BIO MATERIALS 2023; 6:3984-4001. [PMID: 37707491 DOI: 10.1021/acsabm.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
In the field of carbon nanomaterials, carbon dots (CDs) have become a preferable choice in biomedical applications. Based on the concept of green chemistry, CDs derived from traditional Chinese medicines (TCMs) have attracted extensive attention, including TCM charcoal drugs, TCM extracts, and TCM small molecules. The design and preparation of CDs from TCMs (TCMs-CDs) can improve the inherent characteristics of TCMs, such as solubility, particle size distribution, and so on. Compared with other precursor materials, TCMs-CDs have outstanding intrinsic bioactivities and potential pharmacological effects. However, the research of TCMs-CDs in biomedicine is not comprehensive, and their mechanisms have not been understood deeply either. In this review, we will provide concise insights into the recent development of TCMs-CDs, with a major focus on their preparation, formation, precursors, and bioactivities. Then we will discuss the perfect transformation from TCMs to TCMs-CDs. Finally, we discuss the opportunities and challenges for the application of TCMs-CDs in clinical treatment.
Collapse
Affiliation(s)
- Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhonghao Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Leiling Shi
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Kumara BN, Kalimuthu P, Prasad KS. Synthesis, properties and potential applications of photoluminescent carbon nanoparticles: A review. Anal Chim Acta 2023; 1268:341430. [PMID: 37268342 DOI: 10.1016/j.aca.2023.341430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072, Australia.
| | - K S Prasad
- Centre for Nutrition Studies, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
9
|
Liu X, Sun B. One-Pot Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Applications in Bioimaging and Detecting Copper Ions in Living Cells. ACS OMEGA 2023; 8:27333-27343. [PMID: 37546585 PMCID: PMC10399175 DOI: 10.1021/acsomega.3c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Two natural carbon sources, glutamic acid and tyrosine, were used to fabricate strong green emission nitrogen-doped graphene quantum dots (N-GQDs) with the one-pot pyrolysis method. The morphology of the prepared GQDs has been characterized by high-resolution transmission electron microscopy, showing a well-displayed crystalline structure with a lattice spacing of 0.262 nm. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to analyze the surface functional groups and elemental composition, suggesting that the N-GQDs have active carboxylic and amino functional groups. Meanwhile, photoluminescence and ultraviolet-visible (UV-vis) spectroscopy were used to evaluate the optical properties of GQDs; the prepared N-GQDs show an excitation-dependent fluorescence behavior with a maximum excitation/emission wavelength at 460/522 nm, respectively. N-GQDs showed good photostability and the fluorescence intensity quenched about 10% after irradiating 2800 s in the experiment of time kinetic analysis. The MTT assay was utilized to assess the viability of N-GQDs; good biocompatibility with a relatively high quantum yield of 12% demonstrated the potential for serving as bioimaging agents. Besides, the selectivity study on metal ions indicates that the N-GQDs could be used in Cu2+ detection. The linear range is from 0.1 to 10 μM with a limit of detection of 0.06 μM. Overall, these proposed N-GQDs with one-pot synthesis showed their promising potential in cell imaging and Cu2+ monitoring applications involved in the biological environment.
Collapse
|
10
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
11
|
Madhi A. Smart epoxy/polyurethane/carbon quantum dots hybrid coatings: Synthesis and study of UV-shielding, viscoelastic, and anti-corrosive properties. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abbas Madhi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| |
Collapse
|
12
|
Shellaiah M, Sun KW. Review on Carbon Dot-Based Fluorescent Detection of Biothiols. BIOSENSORS 2023; 13:335. [PMID: 36979547 PMCID: PMC10046571 DOI: 10.3390/bios13030335] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play a vital role in gene expression, maintaining redox homeostasis, reducing damages caused by free radicals/toxins, etc. Likewise, abnormal levels of biothiols can lead to severe diseases, such as Alzheimer's disease (AD), neurotoxicity, hair depigmentation, liver/skin damage, etc. To quantify the biothiols in a biological system, numerous low-toxic probes, such as fluorescent quantum dots, emissive organic probes, composited nanomaterials, etc., have been reported with real-time applications. Among these fluorescent probes, carbon-dots (CDs) have become attractive for biothiols quantification because of advantages of easy synthesis, nano-size, crystalline properties, low-toxicity, and real-time applicability. A CDs-based biothiols assay can be achieved by fluorescent "Turn-On" and "Turn-Off" responses via direct binding, metal complex-mediated detection, composite enhanced interaction, reaction-based reports, and so forth. To date, the availability of a review focused on fluorescent CDs-based biothiols detection with information on recent trends, mechanistic aspects, linear ranges, LODs, and real applications is lacking, which allows us to deliver this comprehensive review. This review delivers valuable information on reported carbon-dots-based biothiols assays, the underlying mechanism, their applications, probe/CDs selection, sensory requirement, merits, limitations, and future scopes.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Green Synthesis of Blue-Emitting Graphene Oxide Quantum Dots for In Vitro CT26 and In Vivo Zebrafish Nano-Imaging as Diagnostic Probes. Pharmaceutics 2023; 15:pharmaceutics15020632. [PMID: 36839953 PMCID: PMC9960939 DOI: 10.3390/pharmaceutics15020632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Graphene oxide quantum dots (GOQDs) are prepared using black carbon as a feedstock and H2O2 as a green oxidizing agent in a straightforward and environmentally friendly manner. The process adopted microwave energy and only took two minutes. The GOQDs are 20 nm in size and have stable blue fluorescence at 440 nm. The chemical characteristics and QD morphology were confirmed by thorough analysis using scanning electron microscope (SEM), transmission electron microscope (TEM), atomic force microscope (AFM), Fourier transmission infra-red (FT-IR), and X-ray photoelectron spectroscopy (XPS). The biocompatibility test was used to evaluate the toxicity of GOQDs in CT26 cells in vitro and the IC50 was found to be 200 µg/mL with excellent survival rates. Additional in vivo toxicity assessment in the developing zebrafish (Danio rerio) embryo model found no observed abnormalities even at a high concentration of 400 μg/mL after 96 h post fertilization. The GOQDs luminescence was also tested both in vitro and in vivo. They showed excellent internal distribution in the cytoplasm, cell nucleus, and throughout the zebrafish body. As a result, the prepared GOQDs are expected to be simple and inexpensive materials for nano-imaging and diagnostic probes in nanomedicine.
Collapse
|
14
|
Albalawi MA, Gomaa H, El Hamd MA, Abourehab MAS, Abdel-Lateef MA. Detection of Indigo Carmine dye in juices via application of photoluminescent europium-doped carbon dots from tannic acid. LUMINESCENCE 2023; 38:92-98. [PMID: 36427249 DOI: 10.1002/bio.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Indigo Carmine is a hazardous dye and produces an allergic action for humans despite the excessive use of the dye in several industrial fields. A sensitive and simple fluorescent assay for determining Indigo Carmine relying on quenching of the fluorescent europium-doped carbon dots by the action of inner filter effect was developed. This sensing platform involved the preparation of europium-doped carbon dots from the hydrothermal carbonization of tannic acid and europium chloride, which was used as fluorescent reagent with a distinctive excitation/emission wavelength at 307/340 nm. Both excitation and emission fluorescence of prepared carbon dots can be successfully quenched by adding Indigo Carmine dye. The developed spectrofluorimetric method exhibits good linearity with the concentration of Indigo Carmine dye in the range of 1.5 to 10.0 μg/ml and provided a limit of detection (LOD) value of 0.40 μg/ml. Furthermore, the prepared carbon nanoparticles were identified and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and ultraviolet (UV)-spectrophotometer techniques. In addition, the developed detecting approach was applied to determine Indigo Carmine in juice samples with acceptable recovery.
Collapse
Affiliation(s)
| | - Hassanien Gomaa
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mohamed A El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| |
Collapse
|
15
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Kurniawan D, Gholami A, Chiang WH. Bioresource-Functionalized Quantum Dots for Energy Generation and Storage: Recent Advances and Feature Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3905. [PMID: 36364683 PMCID: PMC9658778 DOI: 10.3390/nano12213905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The exponential increase in global energy demand in daily life prompts us to search for a bioresource for energy production and storage. Therefore, in developing countries with large populations, there is a need for alternative energy resources to compensate for the energy deficit in an environmentally friendly way and to be independent in their energy demands. The objective of this review article is to compile and evaluate the progress in the development of quantum dots (QDs) for energy generation and storage. Therefore, this article discusses the energy scenario by presenting the basic concepts and advances of various solar cells, providing an overview of energy storage systems (supercapacitors and batteries), and highlighting the research progress to date and future opportunities. This exploratory study will examine the systematic and sequential advances in all three generations of solar cells, namely perovskite solar cells, dye-sensitized solar cells, Si cells, and thin-film solar cells. The discussion will focus on the development of novel QDs that are economical, efficient, and stable. In addition, the current status of high-performance devices for each technology will be discussed in detail. Finally, the prospects, opportunities for improvement, and future trends in the development of cost-effective and efficient QDs for solar cells and storage from biological resources will be highlighted.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | | | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| |
Collapse
|
16
|
Rosmarinus officinalis extract as eco-friendly corrosion inhibitor for copper in 1M Nitric acid solution: Experimental and Theoretical Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Nizami MZI, Yin IX, Lung CYK, Niu JY, Mei ML, Chu CH. In Vitro Studies of Graphene for Management of Dental Caries and Periodontal Disease: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14101997. [PMID: 36297434 PMCID: PMC9611330 DOI: 10.3390/pharmaceutics14101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Graphene is a single-layer two-dimensional carbon-based nanomaterial. It presents as a thin and strong material that has attracted many researchers’ attention. This study provides a concise review of the potential application of graphene materials in caries and periodontal disease management. Pristine or functionalized graphene and its derivatives exhibit favorable physicochemical, mechanical, and morphological properties applicable to biomedical applications. They can be activated and functionalized with metal and metal nanoparticles, polymers, and other small molecules to exhibit multi-differentiation activities, antimicrobial activities, and biocompatibility. They were investigated in preventive dentistry and regenerative dentistry. Graphene materials such as graphene oxide inhibit cariogenic microbes such as Streptococcus mutans. They also inhibit periodontal pathogens that are responsible for periodontitis and root canal infection. Graphene-fluorine promotes enamel and dentin mineralization. These materials were also broadly studied in regenerative dental research, such as dental hard and soft tissue regeneration, as well as periodontal tissue and bone regeneration. Graphene oxide-based materials, such as graphene oxide-fibroin, were reported as promising in tissue engineering for their biocompatibility, bioactivity, and ability to enhance cell proliferation properties in periodontal ligament stem cells. Laboratory research showed that graphene can be used exclusively or by incorporating it into existing dental materials. The success of laboratory studies can translate the application of graphene into clinical use.
Collapse
Affiliation(s)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
- Correspondence:
| |
Collapse
|
18
|
Altowyan AS, Toghan A, Ahmed HA, Pashameah RA, Mwafy EA, Alrefaee SH, Mostafa AM. Removal of methylene blue dye from aqueous solution using carbon nanotubes decorated by nickel oxide nanoparticles via pulsed laser ablation method. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Chatterjee M, Nath P, Kadian S, Kumar A, Kumar V, Roy P, Manik G, Satapathi S. Highly sensitive and selective detection of dopamine with boron and sulfur co-doped graphene quantum dots. Sci Rep 2022; 12:9061. [PMID: 35641637 PMCID: PMC9156697 DOI: 10.1038/s41598-022-13016-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/19/2022] [Indexed: 01/26/2023] Open
Abstract
In this work, we report, the synthesis of Boron and Sulfur co-doped graphene quantum dots (BS-GQDs) and its applicability as a label-free fluorescence sensing probe for the highly sensitive and selective detection of dopamine (DA). Upon addition of DA, the fluorescence intensity of BS-GQDs were effectively quenched over a wide concentration range of DA (0–340 μM) with an ultra-low detection limit of 3.6 μM. The quenching mechanism involved photoinduced electron transfer process from BS-GQDs to dopamine-quinone, produced by the oxidization of DA under alkaline conditions. The proposed sensing mechanism was probed using a detailed study of UV–Vis absorbance, steady state and time resolved fluorescence spectroscopy. The high selectivity of the fluorescent sensor towards DA is established. Our study opens up the possibility of designing a low-cost biosensor which will be suitable for detecting DA in real samples.
Collapse
Affiliation(s)
- Manisha Chatterjee
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Prathul Nath
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Sachin Kadian
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Anshu Kumar
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Vishal Kumar
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Gaurav Manik
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India
| | - Soumitra Satapathi
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand, 247667, India.
| |
Collapse
|
20
|
Abdelhamid AE, Ward AA, Khalil AM. Electrical conductivity and thermal stability of surface-modified multiwalled carbon nanotubes/polysulfone/poly( p-phenylenediamine) composites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Multiwalled carbon nanotubes (MWCNTs) were functionalized with acid then coated with poly(p-phenylenediamine) (PpPD). Various concentrations of modified multiwalled carbon nanotubes (MWCNTs@PpPD) were introduced to a polysulfone (PSU) and poly(p-phenylenediamine) (PpPD) blend providing nanocomposites in form of sheets. Chemical oxidative polymerization was used to polymerize p-phenylenediamine. PpPD is then applied as a compatibilizer in such heterogeneous system to facilitate a successful percolation for MWCNTs in the polymeric matrix as an enhanced conductive filler. The morphological investigations showed homogeneous distribution for MWCNTs in the polymeric matrix. The prepared composites were investigated demonstrating favorable thermal and electrical properties. Thermogravimetric analysis (TGA) emphasized that MWCNTs@PpPD contributed in enhancing the thermal stability of the prepared sheets. The electrical conductivity of PSU/PpPD/MWCNTs@PpPD nanocomposites boosted upon raising the magnitude of loaded MWCNTs. The existence of MWCNTs@PpPD in the polymeric matrix extended the interfacial polarization effects with elevating the conductance. The loaded composite with (7.5 wt%) MWCNTs@PpPD showed the optimum electrical conductivity values. It was then treated with HCl to protonate the amine groups in PpPD showing higher conductivity value than its corresponding untreated one. PpPD and MWCNTs contributed synergistically in modifying the insulation feature of PSU to a favorable electrical conductivity one.
Collapse
Affiliation(s)
- Ahmed E. Abdelhamid
- Polymers and Pigments Department , National Research Centre , Dokki 12622 , Giza , Egypt
| | - Azza A. Ward
- Microwave Physics and Dielectrics Department , National Research Centre , Dokki 12622 , Giza , Egypt
| | - Ahmed M. Khalil
- Photochemistry Department , National Research Centre , Dokki 12622 , Giza , Egypt
| |
Collapse
|
21
|
Research Progress of Graphene Nano-Electromechanical Resonant Sensors—A Review. MICROMACHINES 2022; 13:mi13020241. [PMID: 35208365 PMCID: PMC8876833 DOI: 10.3390/mi13020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Graphene nano-electromechanical resonant sensors have wide application in areas such as seawater desalination, new energy, biotechnology, and aerospace due to their small size, light weight, and high sensitivity and resolution. This review first introduces the physical and chemical properties of graphene and the research progress of four preparation processes of graphene. Next, the principle prototype of graphene resonators is analyzed, and three main methods for analyzing the vibration characteristics of a graphene resonant sheet are described: molecular structural mechanics, non-local elastic theory and molecular dynamics. Then, this paper reviews research on graphene resonator preparation, discussing the working mechanism and research status of the development of graphene resonant mass sensors, pressure sensors and inertial sensors. Finally, the difficulties in developing graphene nano-electromechanical resonant sensors are outlined and the future trend of these sensors is described.
Collapse
|
22
|
Tuning the compositional configuration of hydroxyapatite modified with vanadium ions including thermal stability and antibacterial properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9020388] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dots have gained tremendous interest attributable to their unique features. Two approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery. However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological applications are also highlighted.
Collapse
|