1
|
Zhu S, Gu X, Liu S, Liu Y. Analysis of Factors Affecting the Preparation of Mullite Whiskers from Silica-Rich Slag and Application Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7633. [PMID: 38138775 PMCID: PMC10745007 DOI: 10.3390/ma16247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
This paper presents an in-depth comparative study of the effects of different molten salt systems, catalyst additions, preparation temperatures, temperature rise rates, and holding times on the properties of mullite whiskers during their preparation process, as well as exploring the enhancement of the toughening effect of mullite whiskers on ceramics. The morphology, crystal structure, and composition of the whiskers were analyzed via SEM, XRD, TG, strength tests, etc. The results show that the best-performing mullite whisker was prepared with an aluminum sulfate molten salt system, with the addition of aluminum fluoride catalyst at 4%, a temperature increase rate of 5 °C, a temperature increase up to 850 °C, and a holding time of 5 h, and its aspect ratio reached 20.64. By adding different contents of mullite whiskers and comparing the toughness strengths and wear rates of the silicon carbide ceramics, it was found that the toughness strength of the ceramics was improved by more than 16.5% and the wear rate was lower than 0.4% when the addition of mullite whisker was more than 3%.
Collapse
Affiliation(s)
- Shangwen Zhu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China; (S.Z.); (Y.L.)
| | - Xiaohua Gu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China; (S.Z.); (Y.L.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 200051, China
| | - Siwen Liu
- College of Innovative Material & Energy, Hubei University, Wuhan 430062, China;
| | - Yan Liu
- School of Energy and Building Environment, Guilin University of Aerospace Technology, Guilin 541004, China; (S.Z.); (Y.L.)
| |
Collapse
|
2
|
Agrawal R, Bhagia S, Satlewal A, Ragauskas AJ. Urban mining from biomass, brine, sewage sludge, phosphogypsum and e-waste for reducing the environmental pollution: Current status of availability, potential, and technologies with a focus on LCA and TEA. ENVIRONMENTAL RESEARCH 2023; 224:115523. [PMID: 36805896 DOI: 10.1016/j.envres.2023.115523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Rapid industrialization, improved standards of living, growing economies and ever-increasing population has led to the unprecedented exploitation of the finite and non-renewable resources of minerals in past years. It was observed that out of 100 BMT of raw materials processed annually only 10% is recycled back. This has resulted in a strenuous burden on natural or primary resources of minerals (such as ores) having limited availability. Moreover, severe environmental concerns have been raised by the huge piles of waste generated at landfill sites. To resolve these issues, 'Urban Mining' from waste or secondary resources in a Circular Economy' concept is the only sustainable solution. The objective of this review is to critically examine the availability, elemental composition, and the market potential of the selected secondary resources such as lignocellulosic/algal biomass, desalination water, sewage sludge, phosphogypsum, and e-waste for minerals sequestration. This review showed that, secondary resources have potential to partially replace the minerals required in different sectors such as macro and microelements in agriculture, rare earth elements (REEs) in electrical and electronics industry, metals in manufacturing sector and precious elements such as gold and platinum in ornamental industry. Further, inputs from the selected life cycle analysis (LCA) & techno economic analysis (TEA) were discussed which showed that although, urban mining has a potential to reduce the greenhouse gaseous (GHG) emissions in a sustainable manner however, process improvements through innovative, novel and cost-effective pathways are essentially required for its large-scale deployment at industrial scale in future.
Collapse
Affiliation(s)
- Ruchi Agrawal
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana, 122103, India.
| | - Samarthya Bhagia
- Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Alok Satlewal
- Department of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana, 121007, India.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN, 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
3
|
Azadgoleh MA, Mohammadi MM, Ghodrati A, Sharifi SS, Palizban SMM, Ahmadi A, Vahidi E, Ayar P. Characterization of contaminant leaching from asphalt pavements: A critical review of measurement methods, reclaimed asphalt pavement, porous asphalt, and waste-modified asphalt mixtures. WATER RESEARCH 2022; 219:118584. [PMID: 35580389 DOI: 10.1016/j.watres.2022.118584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the pavement industry has been seeking sustainable development through recycling reclaimed asphalt pavement and reusing other waste materials as replacements for asphalt mixture constituents. Incorporating waste material into asphalt mixture and the presence of pollutants such as exhaust fumes and gasoline due to vehicle traffic may lead to contaminants leaching from asphalt pavements to underlying soil layers and groundwater aquifers, posing serious risks to ecosystems and the environment. To cast light on contaminant leaching from asphalt pavements, this article presents a comprehensive review of the literature that is divided into four research areas: evaluation of leaching measurement methods, leaching from recycled asphalt materials, leaching characteristics of porous asphalt pavements, and waste-modified asphalt mixtures. Moreover, a critical discussion of bibliometric data, literature content and knowledge gaps in this domain is provided to help highway agencies and environmental scientists address contaminant leaching from asphalt pavements. Finally, some potential research directions are suggested for future research works.
Collapse
Affiliation(s)
| | | | - Ali Ghodrati
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Sina Sharifi
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Arman Ahmadi
- Department of Biological and Agricultural Engineering, University of California, Davis, USA
| | - Ehsan Vahidi
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | - Pooyan Ayar
- School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|