1
|
Moldovan F, Moldovan L. Indoor Air Quality in an Orthopedic Hospital from Romania. TOXICS 2024; 12:815. [PMID: 39590995 PMCID: PMC11598109 DOI: 10.3390/toxics12110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024]
Abstract
Inside hospitals, there is a trend of increasing levels of air pollutants. However, only the indoor air quality in operating theaters is carefully monitored. Therefore, we set the goal of this study to evaluate the indoor air quality in areas of an orthopedics department and to compare the indoor air quality indices that characterize these areas. We used a monitoring system based on the Internet of Things with uRADMonitor model A3 sensors, with which we prospectively measured indoor air quality in the facilities of the orthopedic emergency hospital of Targu Mures in Romania, between 1 February 2023, and 31 January 2024. The primary target pollutants investigated in the emergency room, outpatient room and ward were carbon dioxide (CO2), nitrogen dioxide (NO2), volatile organic compounds (VOCs) and particles with a diameter smaller than 2.5 μm (PM2.5). We compared the effectiveness of the intervention for emergency rooms where air purifiers were working or not. The concentrations of CO2, VOCs and PM2.5 were significantly higher in the emergency room than in the outpatient room or ward. The indoor air quality was worst in winter, when the CO2, NO2 and VOC concentrations were at their highest. Air purifiers can help reduce the concentration of PM2.5 in emergency rooms. Medical staff and patients in orthopedic hospitals, especially in emergency rooms, are frequently exposed to polluted ambient air, which can affect their health. Orthopedic medical practice guidelines should address issues relating to the protection of personnel through the application of measures to improve indoor air quality.
Collapse
Affiliation(s)
- Flaviu Moldovan
- Orthopedics—Traumatology Department, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Liviu Moldovan
- Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
2
|
Rizzo M, Bordignon M, Bertoli P, Biasiol G, Crosera M, Magnano GC, Marussi G, Negro C, Larese Filon F. Exposure to gallium arsenide nanoparticles in a research facility: a case study using molecular beam epitaxy. Nanotoxicology 2024; 18:259-271. [PMID: 38647006 DOI: 10.1080/17435390.2024.2341893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
We evaluated GaAs nanoparticle-concentrations in the air and on skin and surfaces in a research facility that produces thin films, and to monitored As in the urine of exposed worker. The survey was over a working week using a multi-level approach. Airborne personal monitoring was implemented using a miniature diffusion size classifier (DiSCMini) and IOM sampler. Environmental monitoring was conducted using the SKC Sioutas Cascade Impactor to evaluate dimensions and nature of particles collected. Surfaces contamination were assessed analyzing As and Ga in ghost wipes. Skin contamination was monitored using tape strips. As and Ga were analyzed in urines collected every day at the beginning and end of the shift. The greatest airborne exposure occurred during the cutting operations of the GaAs Sample (88883 np/cm3). The highest levels of contamination were found inside the hood (As max = 1418 ng/cm2) and on the laboratory floor (As max = 251 ng/cm2). The average concentration on the worker's skin at the end of the work shift (3.36 ng/cm2) was more than 14 times higher than before the start of the shift. In weekly urinary biomonitoring an average As concentration of 19.5 µg/L, which was above the Società Italiana Valori di Riferimento (SIVR) reference limit for the non-occupational population (2.0 - 15 µg/L), but below the ACGIH limit (30 µg/L). Overall, airborne monitoring, surface sampling, skin sampling, and biomonitoring of worker confirmed the exposure to As of workers. Systematic cleaning operations, hood implementation and correct PPE management are needed to improve worker protection.
Collapse
Affiliation(s)
- Marco Rizzo
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Michele Bordignon
- Inter-University Degree Course in Prevention Techniques in the Environment and Workplaces, University of Udine and Trieste, Trieste, Italy
| | - Paolo Bertoli
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | | | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Greta Camilla Magnano
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Corrado Negro
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| | - Francesca Larese Filon
- Clinical Operational Unit of Occupational Medicine, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Ridolfo S, Amato F, Querol X. Particle number size distributions and concentrations in transportation environments: a review. ENVIRONMENT INTERNATIONAL 2024; 187:108696. [PMID: 38678934 DOI: 10.1016/j.envint.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Ambient air ultrafine particles (UFP, particles with a diameter <100 nm) have gained significant attention in World Health Organization (WHO) air quality guidelines and European legislation. This review explores UFP concentrations and particle number size distributions (PNC-PNSD) in various transportation hotspots, including road traffic, airports, harbors, trains, and urban commuting modes (walking, cycling, bus, tram, and subway). The results highlight the lack of information on personal exposure at harbors and railway stations, inside airplanes and trains, and during various other commuting modes. The different lower particle size limits of the reviewed measurements complicate direct comparisons between them. Emphasizing the use of instruments with detection limits ≤10 nm, this review underscores the necessity of following standardized UFP measurement protocols. Road traffic sites are shown to exhibit the highest PNC within cities, with PNC and PNSD in commuting modes driven by the proximity to road traffic and weather conditions. In closed environments, such as cars, buses, and trams, increased external air infiltration for ventilation correlates with elevated PNC and a shift in PNSD toward smaller diameters. Airports exhibit particularly elevated PNCs near runways, raising potential concerns about occupational exposure. Recommendations from this study include maintaining a substantial distance between road traffic and other commuting modes, integrating air filtration into ventilation systems, implementing low-emission zones, and advocating for a general reduction in road traffic to minimize daily UFP exposure. Our findings provide important insights for policy assessments and underscore the need for additional research to address current knowledge gaps.
Collapse
Affiliation(s)
- S Ridolfo
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - F Amato
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council (IDÆA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
4
|
Bellagamba I, Boccuni F, Ferrante R, Tombolini F, Natale C, Marra F, Sarto MS, Iavicoli S. Occupational Exposure during the Production and the Spray Deposition of Graphene Nanoplatelets-Based Polymeric Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1378. [PMID: 37110963 PMCID: PMC10142999 DOI: 10.3390/nano13081378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Graphene-based polymer composites are innovative materials which have recently found wide application in many industrial sectors thanks to the combination of their enhanced properties. The production of such materials at the nanoscale and their handling in combination with other materials introduce growing concerns regarding workers' exposure to nano-sized materials. The present study aims to evaluate the nanomaterials emissions during the work phases required to produce an innovative graphene-based polymer coating made of a water-based polyurethane paint filled with graphene nanoplatelets (GNPs) and deposited via the spray casting technique. For this purpose, a multi-metric exposure measurement strategy was adopted in accordance with the harmonized tiered approach published by the Organization for Economic Co-operation and Development (OECD). As a result, potential GNPs release has been indicated near the operator in a restricted area not involving other workers. The ventilated hood inside the production laboratory guarantees a rapid reduction of particle number concentration levels, limiting the exposure time. Such findings allowed us to identify the work phases of the production process with a high risk of exposure by inhalation to GNPs and to define proper risk mitigation strategies.
Collapse
Affiliation(s)
- Irene Bellagamba
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, I-00185 Rome, Italy
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, I-00184 Rome, Italy
| | - Fabio Boccuni
- Italian Workers’ Compensation Authority—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, I-00078 Rome, Italy
| | - Riccardo Ferrante
- Italian Workers’ Compensation Authority—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, I-00078 Rome, Italy
| | - Francesca Tombolini
- Italian Workers’ Compensation Authority—Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, I-00078 Rome, Italy
| | - Claudio Natale
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, I-00184 Rome, Italy
| | - Fabrizio Marra
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, I-00185 Rome, Italy
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, I-00184 Rome, Italy
| | - Maria Sabrina Sarto
- Research Center for Nanotechnology Applied to Engineering (CNIS), Sapienza University of Rome, I-00185 Rome, Italy
- Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, I-00184 Rome, Italy
| | - Sergio Iavicoli
- Directorate General for Communication and European and International Relations, Italian Ministry of Health, Lungotevere Ripa 1, I-00153 Rome, Italy
| |
Collapse
|
5
|
Luo Z, Xing R, Huang W, Xiong R, Qin L, Ren Y, Li Y, Liu X, Men Y, Jiang K, Tian Y, Shen G. Impacts of Household Coal Combustion on Indoor Ultrafine Particles-A Preliminary Case Study and Implication on Exposure Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5161. [PMID: 35564556 PMCID: PMC9101610 DOI: 10.3390/ijerph19095161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Ultrafine particles (UFPs) significantly affect human health and climate. UFPs can be produced largely from the incomplete burning of solid fuels in stoves; however, indoor UFPs are less studied compared to outdoor UFPs, especially in coal-combustion homes. In this study, indoor and outdoor UFP concentrations were measured simultaneously by using a portable instrument, and internal and outdoor source contributions to indoor UFPs were estimated using a statistical approach based on highly temporally resolved data. The total concentrations of indoor UFPs in a rural household with the presence of coal burning were as high as 1.64 × 105 (1.32 × 105-2.09 × 105 as interquartile range) #/cm3, which was nearly one order of magnitude higher than that of outdoor UFPs. Indoor UFPs were unimodal, with the greatest abundance of particles in the size range of 31.6-100 nm. The indoor-to-outdoor ratio of UFPs in a rural household was about 6.4 (2.7-16.0), while it was 0.89 (0.88-0.91) in a home without strong internal sources. A dynamic process illustrated that the particle number concentration increased by ~5 times during the coal ignition period. Indoor coal combustion made up to over 80% of indoor UFPs, while in an urban home without coal combustion sources indoors, the outdoor sources may contribute to nearly 90% of indoor UFPs. A high number concentration and a greater number of finer particles in homes with the presence of coal combustion indicated serious health hazards associated with UFP exposure and the necessity for future controls on indoor UFPs.
Collapse
Affiliation(s)
- Zhihan Luo
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ran Xing
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Wenxuan Huang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Rui Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Lifan Qin
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yuxuan Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yaojie Li
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Xinlei Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yatai Men
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ke Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yanlin Tian
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| |
Collapse
|
6
|
Airborne LTA Nanozeolites Characterization during the Manufacturing Process and External Sources Interaction with the Workplace Background. NANOMATERIALS 2022; 12:nano12091448. [PMID: 35564157 PMCID: PMC9104400 DOI: 10.3390/nano12091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022]
Abstract
Engineered nanoscale amorphous silica nanomaterials are widespread and used in many industrial sectors. Currently, some types of silicon-based nanozeolites (NZs) have been synthesized, showing potential advantages compared to the analogous micro-forms; otherwise, few studies are yet available regarding their potential toxicity. In this respect, the aim of the present work is to investigate the potential exposure to airborne Linde Type A (LTA) NZs on which toxicological effects have been already assessed. Moreover, the contributions to the background related to the main emission sources coming from the outdoor environment (i.e., vehicular traffic and anthropogenic activities) were investigated as possible confounding factors. For this purpose, an LTA NZ production line in an industrial factory has been studied, according to the Organisation for Economic Cooperation and Development (OECD) guidelines on multi-metric approach to investigate airborne nanoparticles at the workplace. The main emission sources of nanoparticulate matter within the working environment have been identified by real-time measurements (particle number concentration, size distribution, average diameter, and lung-deposited surface area). Events due to LTA NZ spillage in the air during the cleaning phases have been chemically and morphologically characterized by ICP-MS and SEM analysis, respectively.
Collapse
|