1
|
Cha S, Cho K, Lim N, Oh H, Choi E, Shim S, Lee SH, Hahn JS. Enhancement of fermentation traits in industrial Baker's yeast for low or high sugar environments. Food Microbiol 2025; 125:104643. [PMID: 39448153 DOI: 10.1016/j.fm.2024.104643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/26/2024]
Abstract
Saccharomyces cerevisiae SPC-SNU 70-1 is a commercial diploid baking yeast strain valued for its excellent bread-making qualities, including superior leavening capabilities and the production of flavor-enhancing volatile organic acids. Despite its benefits, this strain faces challenges in fermenting both lean (low-sugar) and sweet (high-sugar) doughs. To address these issues, we employed the CRISPR/Cas9 genome editing system to modify genes without leaving any genetic scars. For lean doughs, we enhanced the yeast's ability to utilize maltose over glucose by deleting a gene involved in glucose repression. For sweet doughs, we increased glycerol production by overexpressing glycerol biosynthetic genes and optimizing redox balance, thereby improving the tolerence to osmotic stress during fermentation. Additionally, the glycerol-overproducing strain demonstrated enhanced freeze tolerance, and bread made from this strain exhibited improved storage properties. This study demonstrates the feasibility and benefits of using engineered yeast strains, created solely by editing their own genes without introducing foreign genes, to enhance bread making.
Collapse
Affiliation(s)
- Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kijoo Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Nayoung Lim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyewon Oh
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunji Choi
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sangmin Shim
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sung-Ho Lee
- Research Institute of Food and Biotechnology, SPC Group Co., 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Martin GB, Fordyce G, McGowan MR, Juengel JL. Perspectives for reproduction and production in grazing sheep and cattle in Australasia: The next 20 years. Theriogenology 2024; 230:174-182. [PMID: 39305854 DOI: 10.1016/j.theriogenology.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
We offer a perspective on the major challenges that are confronting the management of reproduction in sheep and cattle in Australia and New Zealand, over the next two decades. An important context is the dominance of grazing systems in which large flocks or herds are managed over large areas where it is challenging to manage reproduction with precision. Consequently, the variable forage supply usually dominates reproductive outcomes, a problem that will be exacerbated by global heating. Thus, in extensive grazing systems, there is a great need for technological solutions to improve the management of nutrition. Global heating will also exert direct effects on reproductive function. Therefore, for the foreseeable future, reproduction will remain a focus for industry. In addition, as the industries develop, we foresee continued societal pressure to reduce medication, mitigate environmental damage, and improve animal well-being. Management solutions for extensive grazing systems must involve minimal interventions with the animals and be applicable to diverse genotypes and environments. Clearly, genetics and breeding will be at the heart of solutions and elegant strategies will be needed that focus on developing animals that are robust, if perhaps a little less productive. A high rate of genetic gain is the main reason for pursuing reproductive technologies, but highly advanced reproductive technology is not likely to be the best fit in extensive management systems. Even for AI, the simplest technology, uptake is limited and lateral thinking is needed to find ways to improve the rates of genetic gain. We conclude that there are many opportunities for improving reproductive performance in sheep and cattle in Australia and New Zealand. As we gain deeper understanding of the processes involved, we should be able to make progress in fertility and fecundity, embryo survival, and postnatal survival. Improvements in reproductive performance will increase productivity, and should also be associated with significantly improved animal well-being and a reduction in methane emissions intensity. To capture these benefits, the development of new management options will require lateral thinking about reproductive technology for extensive grazing systems, and a transdisciplinary approach that brings together the systems biology of grazing animals with an understanding of the barriers to adoption by farmers.
Collapse
Affiliation(s)
- Graeme B Martin
- The UWA Institute of Agriculture and UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA, Australia.
| | - Geoffry Fordyce
- The University of Queensland, Queensland Alliance for Agricultural and Food Innovation, Carmody Road, St Lucia, Qld, 4072, Australia
| | - Michael R McGowan
- The University of Queensland, School of Veterinary Science, Warrego Highway, Gatton, Qld, 4343, Australia
| | - Jennifer L Juengel
- Agricultural Systems and Reproduction, Animal Science, Invermay Agricultural Centre, AgResearch Ltd, Puddle Alley, Mosgiel, 9092, New Zealand.
| |
Collapse
|
3
|
Baruselli PS, Abreu LA, Menchaca A, Bó GA. The future of beef production in South America. Theriogenology 2024; 231:21-28. [PMID: 39393108 DOI: 10.1016/j.theriogenology.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
South American beef production varies due to diverse climates, environmental conditions, animal breeds (Bos indicus, Bos taurus and crossbreeds), management strategies, and nutritional sources. Applying technology in the South American beef production system can significantly enhance efficiency, sustainability, and profitability. Reproductive efficiency is a significant challenge, especially in cow-calf operation systems conducted under adverse conditions. Consequently, implementing effective assisted reproduction technologies (ART) can make a significant contribution. In the last two decades, the development of fixed-time artificial insemination (FTAI) protocols permitted the widespread application of artificial insemination for breeding management and genetic improvement in beef herds in South America. Nowadays, FTAI is being applied in South America in large-scale programs, with around 20 % of heifers and cows receiving this technology every year. This results in a greater calving rate and significant genetic gain occurring in this territory. Also, in vitro embryo production, mainly using sex-selected sperm has been widely applied in this region, leading to significant improvements in herd genetics and productivity. Recently, 94 % of all embryo transfers in South America consist of in vitro-produced embryos (41,429 being in vivo-derived and 650,782 being in vitro-produced embryos), mainly using fixed-time embryo transfer technology (FTET). Genomic selection combined with in vitro embryo production with oocytes from heifer calves provides a powerful technology platform to reduce generation interval and significantly increase the rate of genetic gain in beef cattle. Emerging biotechnologies, such as genome editing via the CRISPR/Cas system, are being developed to enhance productivity, confer resilience to adverse environmental conditions, increase disease resistance, and control pest species that affect livestock. Finally, while all these technologies offer significant potential, further progresses are needed to transform livestock production. The vast geographical scale and diverse climates of South America make regional knowledge crucial for aligning beef production with sustainability goals and supporting global food security.
Collapse
Affiliation(s)
- P S Baruselli
- Department of Animal Reproduction, University of São Paulo, São Paulo, Brazil.
| | - L A Abreu
- Department of Animal Reproduction, University of São Paulo, São Paulo, Brazil
| | - A Menchaca
- Instituto de Reproducción Animal Uruguay (Fundación IRAUy), Montevideo, Uruguay; Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay
| | - G A Bó
- Instituto de Reproducción Animal Córdoba (IRAC), Córdoba, Argentina; Universidad Nacional de Villa Maria, Cordoba, Argentina
| |
Collapse
|
4
|
Dos Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M, Menchaca A. Refinements in embryo manipulation applied to CRISPR technology in livestock. Theriogenology 2023; 208:142-148. [PMID: 37329588 DOI: 10.1016/j.theriogenology.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
The implementation of CRISPR technology in large animals requires further improvements in embryo manipulation and transfer to be applied with commercial purposes. In this study we report (a) developmental competence of CRISPR/Cas microinjected zygotes subjected to in vitro culture in large scale programs in sheep; (b) pregnancy outcomes after early-stage (2-8-cell) embryo transfer into the oviduct or the uterine horn; and (c) embryo survival and birth rate after vitrification/warming of CRISPR/Cas microinjected zygotes. Experiment 1 consisted of a retrospective analysis to evaluate embryo developmental rate of in vitro produced zygotes subjected to CRISPR/Cas microinjection (n = 7,819) compared with a subset of non-microinjected zygotes (n = 701). Development rates to blastocyst on Day 6 were 20.0% for microinjected zygotes and 44.9% for non-injected zygotes (P < 0.05). In Experiment 2, CRISPR/Cas microinjected zygotes were transferred on Day 2 after in vitro fertilization (2-8 cell embryos) into the oviductal ampulla (n = 262) or into the uterine horn (n = 276) in synchronized recipient ewes at prefixed time (i.e., approximately two days after ovulation). Pregnant/transferred recipients (24.0% vs. 25.0%), embryo survival/transferred embryos (6.9% vs. 6.2%), and born lambs/pregnant embryos (72.2% vs. 100.0%) did not differ significantly in the two groups. In Experiment 3, CRISPR/Cas microinjected zygotes were maintained under in vitro culture until blastocyst stage (Day 6), and subjected to vitrification/warming via the Cryotop method (n = 474), while a subset of embryos were left fresh as control group (n = 75). Embryos were transferred into the uterine horn of recipient females at prefixed time 8.5 days after the estrous synchronization treatment (i.e., approximately six days after ovulation). Pregnancy rate (30.8% vs. 48.0%), embryo survival rate (14.8% vs. 21.3%), and birth rate (85.7% vs. 75.0%) were not different (PNS) between vitrified and fresh embryos, respectively. In conclusion, the current study in sheep embryos reports (a) suitable developmental rate after CRISPR/Cas microinjection (i.e., 20%), even though it was lower than non-microinjected zygotes; (b) similar outcomes when Day 2-embryos were placed into the uterine horn instead of the oviduct, avoiding both time-consuming and invasive oviduct manipulation, and extended in vitro culture during one week; (c) promising pregnancy and birth rates obtained with vitrification of CRISPR/Cas microinjected embryos. This knowledge on in vitro embryo development, timing of embryo transfer, and cryopreservation of CRISPR/Cas microinjected zygotes have practical implications for the implementation of genome editing technology in large animals.
Collapse
Affiliation(s)
- P C Dos Santos-Neto
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - F Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - M Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay; Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Uruguay
| | - M Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Uruguay
| | - A Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay; Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay.
| |
Collapse
|
5
|
Menchaca A. Assisted Reproductive Technologies (ART) and genome editing to support a sustainable livestock. Anim Reprod 2023; 20:e20230074. [PMID: 37720722 PMCID: PMC10503885 DOI: 10.1590/1984-3143-ar2023-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023] Open
Abstract
This article provides an overview of assisted reproductive technologies (ART) and genome engineering to improve livestock production systems for the contribution of global sustainability. Most ruminant production systems are conducted on grassland conditions, as is the case of South American countries that are leaders in meat and milk production worldwide with a well-established grass-feed livestock. These systems have many strengths from an environmental perspective and consumer preferences but requires certain improvements to enhance resource efficiency. Reproductive performance is one of the main challenges particularly in cow-calf operations that usually are conducted under adverse conditions and thus ART can make a great contribution. Fixed-time artificial insemination is applied in South America in large scale programs as 20 to 30% of cows receive this technology every year in each country, with greater calving rate and significant herd genetic gain occurred in this region. Sexed semen has also been increasingly implemented, enhancing resource efficiency by a) obtaining desired female replacement and improving animal welfare by avoiding newborn male sacrifice in dairy industry, or b) alternatively producing male calves for beef industry. In vitro embryo production has been massively applied, with this region showing the greatest number of embryos produced worldwide leading to significant improvement in herd genetics and productivity. Although the contribution of these technologies is considerable, further improvements will be required for a significant livestock transformation and novel biotechnologies such as genome editing are already available. Through the CRISPR/Cas-based system it is possible to enhance food yield and quality, avoid animal welfare concerns, overcome animal health threats, and control pests and invasive species harming food production. In summary, a significant enhancement in livestock productivity and resource efficiency can be made through reproductive technologies and genome editing, improving at the same time profitability for farmers, and global food security and sustainability.
Collapse
Affiliation(s)
- Alejo Menchaca
- Plataforma de Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
- Fundación Instituto de Reproducción Animal Uruguay, Montevideo, Uruguay
| |
Collapse
|
6
|
Santos-Jimenez Z, Martínez-Ros P, Encinas T, Morales-Cruz JL, Guerrero-Gallegos HZ, Gonzalez-Avalos R, Gonzalez-Bulnes A, Guillen-Muñoz JM. Ovarian Response and Fertility after Short-Term Progestagen/eCG Treatments Are Compromised in Nulliparous Sheep during Non-Breeding Season. Vet Sci 2022; 9:663. [PMID: 36548824 PMCID: PMC9781245 DOI: 10.3390/vetsci9120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The objective of this investigation was to determine the ovarian response, fertility, and prolificacy of nulliparous sheep when compared to multiparous sheep after a short-term (7 days) CIDR/eCG treatment which was administered during the non-breeding season. All the multiparous sheep, whereas only 54% of the nulliparous ewes, showed signs of estrus. However, 81.8% of the multiparous sheep and 100% of the nulliparous ewes ovulated. Fertility was also low after short-term progesterone treatments during the anestrous season in maiden sheep (30.8 vs. 72.7% in multiparous ewes). Such results indicate significant differences in the response to CIDR/eCG protocols for induction and synchronization of estrus and ovulation between nulliparous and multiparous sheep during the non-breeding season.
Collapse
Affiliation(s)
- Zurisaday Santos-Jimenez
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Paula Martínez-Ros
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Teresa Encinas
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juan Luis Morales-Cruz
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Torreón 25315, Coahuila, Mexico
| | | | - Ramiro Gonzalez-Avalos
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Torreón 25315, Coahuila, Mexico
| | - Antonio Gonzalez-Bulnes
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain
| | | |
Collapse
|
7
|
The socio-economic factors affecting the emergence and impacts of new genomic techniques in agriculture: A scoping review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Hötzel MJ, Vandresen B. Brazilians' attitudes to meat consumption and production: Present and future challenges to the sustainability of the meat industry. Meat Sci 2022; 192:108893. [PMID: 35760024 DOI: 10.1016/j.meatsci.2022.108893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Brazil is a main global producer, exporter, and consumer of farm animal products. Information about the knowledge and attitudes of Brazilian citizens and consumers towards the different dimensions of meat production sustainability can support policy discussions and guide the industry to adopt production systems compatible with societal expectations. Here we provide a historical, social, and economic overview of meat production and consumption in Brazil, review the scientific literature on Brazilian public attitudes towards meat production and consumption, and discuss some actions Brazil is taking to develop more sustainable production systems. We show that Brazilians expect affordable meat products with high organoleptic, sanitary, nutritional qualities and produced under high ethical standards. The pace of discussions and changes in policies and in meat production systems needs to accelerate to follow domestic and international demands and the changes in ethical expectations of society. Constructive dialogue between all interested stakeholders, including citizens and consumers, needs to be fostered to design more sustainable meat production systems.
Collapse
Affiliation(s)
- Maria José Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil.
| | - Bianca Vandresen
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil
| |
Collapse
|
9
|
Albernaz-Gonçalves R, Olmos Antillón G, Hötzel MJ. Linking Animal Welfare and Antibiotic Use in Pig Farming-A Review. Animals (Basel) 2022; 12:216. [PMID: 35049838 PMCID: PMC8773261 DOI: 10.3390/ani12020216] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Preventative measures, such as biosecurity and vaccinations, are essential but not sufficient to ensure high standards of health in pig production systems. Restrictive, barren housing and many widely used management practices that cause pain and stress predispose high-performance pigs reared in intensive systems to disease. In this context, antibiotics are used as part of the infrastructure that sustains health and high levels of production in pig farms. Antimicrobial resistance (AMR) is a global emergency affecting human and animal health, and the use of antibiotics (AMU) in intensive livestock farming is considered an important risk factor for the emergence and spread of resistant bacteria from animals to humans. Tackling the issue of AMR demands profound changes in AMU, e.g., reducing their use for prophylaxis and ending it for growth promotion. In support of such recommendations, we revise the link between animal welfare and AMU and argue that it is crucial to sustainably reduce AMU while ensuring that pigs can live happy lives. In support of such recommendations, we aimed to revise the link between animal welfare and AMU in pigs by analysing stress factors related to housing and management and their impact on pig welfare. In particular, we reviewed critical management practices that increase stress and, therefore, pigs' susceptibility to disease and reduce the quality of life of pigs. We also reviewed some alternatives that can be adopted in pig farms to improve animal welfare and that go beyond the reduction in stress. By minimising environmental and management stressors, pigs can become more immunocompetent and prepared to overcome pathogenic challenges. This outcome can contribute to reducing AMU and the risk of AMR while simultaneously improving the quality of life of pigs and, ultimately, maintaining the pig industry's social license.
Collapse
Affiliation(s)
- Rita Albernaz-Gonçalves
- Campus Santa Rosa do Sul, Instituto Federal Catarinense, Santa Rosa do Sul 88965-000, SC, Brazil;
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil
| | - Gabriela Olmos Antillón
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Maria José Hötzel
- Laboratório de Etologia Aplicada e Bem-Estar Animal, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga 1346, Itacorubi, Florianópolis 88034-001, SC, Brazil
| |
Collapse
|