1
|
Voudrias EA. Management of COVID-19 healthcare waste based on the circular economy hierarchy: A critical review. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2024; 42:977-996. [PMID: 37753975 DOI: 10.1177/0734242x231198424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The overall objective of this work was to conduct a critical literature review on the application of the circular economy (CE) hierarchy for the management of COVID-19 healthcare waste (HCW). To describe the problem created by COVID-19 HCW, first, the subsystems of the overall management system, including generation, segregation, classification, storage, collection, transport, treatment and disposal, were reviewed and briefly described. Then, the CE hierarchy using the 10R typology was adapted to the management of COVID-19 HCW and included the strategies Refuse, Reduce, Resell/Reuse, Repair, Reprocess, Refurbish, Remanufacture, Repurpose, Recycle and Recover (energy). Disposal was added as a sink of residues from the CE strategies. Using the detailed 10R CE hierarchy for COVID-19 HCW management is the novelty of this review. It was concluded that R-strategy selection depends on its position in the CE hierarchy and medical item criticality and value. Indicative HCW components, which can be managed by each R-strategy, were compiled, but creating value by recovering infectious downgraded materials contaminated with body fluids and tissues is not currently possible. Therefore, after applying the circular solutions, the end of pipe treatment and disposal would be necessary to close material cycles at the end of their life cycles. Addressing the risks, knowledge gaps and policy recommendations of this article may help to combat COVID-19 and future pandemics without creating environmental crises.
Collapse
Affiliation(s)
- Evangelos A Voudrias
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
2
|
Lyu L, Bagchi M, Markoglou N, An C, Peng H, Bi H, Yang X, Sun H. Towards environmentally sustainable management: A review on the generation, degradation, and recycling of polypropylene face mask waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132566. [PMID: 37742382 DOI: 10.1016/j.jhazmat.2023.132566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
There has been a considerable increase in the use of face masks in the past years. Managing face mask waste has become a global concern, as the current waste management system is insufficient to deal with such a large quantity of solid waste. The drastic increase in quantity, along with the material's inability to degrade plastic components such as polypropylene, has led to a large accumulation of plastic waste, causing a series of environmental and ecological challenges. In addition, the growing use also imposes pressure on waste management methods such as landfill and incineration, raising concerns about high energy consumption, low value-added utilization, and the release of additional pollutants during the process. This article initially reviews the impact of mask-related plastic waste generation and degradation behavior in the natural environment. It then provides an overview of various recently developed methods for recycling face mask plastic waste. The article also offers forward-looking strategies and recommendations on face mask plastic waste management. The review aims to provide guidance on harnessing the complexities of mask waste and other medical plastic pollution issues, as well as improving the current waste management system's deficiencies and inefficiencies in tackling the growing plastic waste problem.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Monisha Bagchi
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Nektaria Markoglou
- Department Research and Development, Meltech Innovation Canada Inc., Medicom Group, Pointe-Claire, QC H9P 2Z2, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Lyu L, Peng H, An C, Sun H, Yang X, Bi H. An insight into the benefits of substituting polypropylene with biodegradable polylactic acid face masks for combating environmental emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167137. [PMID: 37734618 DOI: 10.1016/j.scitotenv.2023.167137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Mask waste can affect the natural environment and human health. In this study, the life cycle assessment (LCA) of two types of face masks (Polylactic acid (PLA) and Polypropylene (PP)) was first performed to evaluate the environmental impacts from production to end-of-life, and then, greenhouse gas (GHG) emissions were estimated for each life stage. The GHG emissions for one functional unit of PP and PLA face masks were estimated to be 6.27E+07 and 5.06E+07 kg CO2 eq, respectively. Explicitly, PLA mask production emissions are 37 % lower as compared to those for PP masks. Packaging has been recognized as a major GHG source throughout the product's life cycle. This study may provide a new insight into the environmental benefits of reducing GHG emissions within PLA face mask life cycles. Biodegradable and environmentally friendly materials can be used in the manufacturing and packaging of face masks.
Collapse
Affiliation(s)
- Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - He Peng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Huijuan Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
4
|
Mahmud TS, Ng KTW, Hasan MM, An C, Wan S. A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. SUSTAINABLE CITIES AND SOCIETY 2023; 96:104685. [PMID: 37274541 PMCID: PMC10225168 DOI: 10.1016/j.scs.2023.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
There is currently a lack of studies on residential waste collection during COVID-19 in North America. SARIMA models were developed to predict residential waste collection rates (RWCR) across four North American jurisdictions before and during the pandemic. Unlike waste disposal rates, RWCR is relatively less sensitive to the changes in COVID-19 regulatory policies and administrative measures, making RWCR more appropriate for cross-jurisdictional comparisons. It is hypothesized that the use of RWCR in forecasting models will help us to better understand the residential waste generation behaviors in North America. Both SARIMA models performed satisfactorily in predicting Regina's RWCR. The SARIMA DCV model's performance is noticeably better during COVID-19, with a 15.7% lower RMSE than that of the benchmark model (SARIMA BCV). The skewness of overprediction ratios was noticeably different between jurisdictions, and modeling errors were generally lower in less populated cities. Conflicting behavioral changes might have altered the residential waste generation characteristics and recycling behaviors differently across the jurisdictions. Overall, SARIMA DCV performed better in the Canadian jurisdiction than in U.S. jurisdictions, likely due to the model's bias on a less variable input dataset. The use of RWCR in forecasting models helps us to better understand the residential waste generation behaviors in North America and better prepare us for a future global pandemic.
Collapse
Affiliation(s)
- Tanvir Shahrier Mahmud
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Mohammad Mehedi Hasan
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Chunjiang An
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada
| | - Shuyan Wan
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 De Maisonneuve Blvd. W., Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
5
|
Requena-Sanchez NP, Carbonel D, Demel L, Moonsammy S, Richter A, Mahmud TS, Ng KTW. A multi-jurisdictional study on the quantification of COVID-19 household plastic waste in six Latin American countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93295-93306. [PMID: 37505388 DOI: 10.1007/s11356-023-28949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
This study examines urban plastic waste generation using a citizen science approach in six Latin American countries during a global pandemic. The objectives are to quantify generation rates of masks, gloves, face shields, and plastic bags in urban households using online survey and perform a systematic cross-jurisdiction comparisons in these Latin American countries. The per capita total mask generation rates ranged from 0.179 to 0.915 mask cap-1 day-1. A negative correlation between the use of gloves and masks is observed. Using the average values, the approximate proportion of masks, gloves, shields, and single-use plastic bags was 34:5:1:84. We found that most studies overestimated face mask disposal rate in Latin America due to the simplifying assumptions on the number of masks discarded per person, masking prevalence rate, and average mask weight. Unlike other studies, end-of-life PPE quantities were directly counted and reported by the survey participants. Both of the conventional weight-based estimates and the proposed participatory survey are recommended in quantifying COVID waste. Participant' perception based on the Likert scale is generally consistent with the waste amount generated. Waste policy and regulation appear to be important in daily waste generation rate. The results highlight the importance of using measured data in waste estimates.
Collapse
Affiliation(s)
- Norvin Plumieer Requena-Sanchez
- Integrated Waste Management for Sustainable Development (GIRDS), Faculty of Environmental Engineering, National University of Engineering, Av. Túpac Amaru 210, Rímac, 15333, Lima, Peru
| | - Dalia Carbonel
- Integrated Waste Management for Sustainable Development (GIRDS), Faculty of Environmental Engineering, National University of Engineering, Av. Túpac Amaru 210, Rímac, 15333, Lima, Peru
| | - Larissa Demel
- United Nations Development Program, Apartado, 0816-1914, Panama, Panama
| | - Stephan Moonsammy
- Department of Environmental Studies, Faculty of Earth and Environmental Sciences, University of Guyana, RV6J+XV8, Turkeyen Campus, Georgetown, Guyana
| | - Amy Richter
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Tanvir Shahrier Mahmud
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
- Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S 0A2, Canada.
| |
Collapse
|
6
|
Deconstruction of waste personal protective equipment (PPE) using subcritical wet air oxidation. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
7
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
8
|
Ranjbari M, Shams Esfandabadi Z, Gautam S, Ferraris A, Scagnelli SD. Waste management beyond the COVID-19 pandemic: Bibliometric and text mining analyses. GONDWANA RESEARCH : INTERNATIONAL GEOSCIENCE JOURNAL 2023; 114:124-137. [PMID: 35153532 PMCID: PMC8816840 DOI: 10.1016/j.gr.2021.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 05/05/2023]
Abstract
The outbreak of the COVID-19 pandemic has significantly increased the demand for personal protective equipment, in particular face masks, thus leading to a huge amount of healthcare waste generated worldwide. Consequently, such an unprecedented amount of newly emerged waste has posed significant challenges to practitioners, policy-makers, and municipal authorities involved in waste management (WM) systems. This research aims at mapping the COVID-19-related scientific production to date in the field of WM. In this vein, the performance indicators of the target literature were analyzed and discussed through conducting a bibliometric analysis. The conceptual structure of COVID-19-related WM research, including seven main research themes, were uncovered and visualized through a text mining analysis as follows: (1) household and food waste, (2) personnel safety and training for waste handling, (3) sustainability and circular economy, (4) personal protective equipment and plastic waste, (5) healthcare waste management practices, (6) wastewater management, and (7) COVID-19 transmission through infectious waste. Finally, a research agenda for WM practices and activities in the post-COVID-19 era was proposed, focusing on the following three identified research gaps: (i) developing a systemic framework to properly manage the pandemic crisis implications for WM practices as a whole, following a systems thinking approach, (ii) building a circular economy model encompassing all activities from the design stage to the implementation stage, and (iii) proposing incentives to effectively involve informal sectors and local capacity in decentralizing municipal waste management, with a specific focus on developing and less-developed countries.
Collapse
Affiliation(s)
- Meisam Ranjbari
- Department of Economics and Statistics "Cognetti de Martiis", University of Turin, Torino, Italy
- ESSCA School of Management, Lyon, France
| | - Zahra Shams Esfandabadi
- Department of Environment, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Torino, Italy
- Energy Center Lab, Politecnico di Torino, Torino, Italy
| | - Sneha Gautam
- Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Alberto Ferraris
- Department of Management, University of Turin, Torino, Italy
- Laboratory for International and Regional Economics, Graduate School of Economics and Management, Ural Federal University, Russia
- Faculty of Economics and Business, University of Rijeka, Croatia
| | - Simone Domenico Scagnelli
- Department of Management, University of Turin, Torino, Italy
- School of Business and Law, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
9
|
Mahmud TS, Ng KTW, Karimi N, Adusei KK, Pizzirani S. Evolution of COVID-19 municipal solid waste disposal behaviors using epidemiology-based periods defined by World Health Organization guidelines. SUSTAINABLE CITIES AND SOCIETY 2022; 87:104219. [PMID: 36187707 PMCID: PMC9515004 DOI: 10.1016/j.scs.2022.104219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/06/2023]
Abstract
This study aims to identify the effects of continued COVID-19 transmission on waste management trends in a Canadian capital city, using pandemic periods defined from epidemiology and the WHO guidelines. Trends are detected using both regression and Mann-Kendall tests. The proposed analytical method is jurisdictionally comparable and does not rely on administrative measures. A reduction of 190.30 tonnes/week in average residential waste collection is observed in the Group II period. COVID-19 virulence negatively correlated with residential waste generation. Data variability in average collection rates during the Group II period increased (SD=228.73 tonnes/week). A slightly lower COVID-19 induced Waste Disposal Variability (CWDW) of 0.63 was observed in the Group II period. Increasing residential waste collection trends during Group II are observed from both regression (b = +1.6) and the MK test (z = +5.0). Both trend analyses reveal a decreasing CWDV trend during the Group I period, indicating higher diversion activities. Decreasing CWDV trends are also observed during the Group II period, probably due to the implementation of new waste programs. The use of pandemic periods derived from epidemiology helps us to better understand the effect of COVID-19 on waste generation and disposal behaviors, allowing us to better compare results in regions with different socio-economic affluences.
Collapse
Affiliation(s)
- Tanvir S Mahmud
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Nima Karimi
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Kenneth K Adusei
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Saskatchewan, Canada, S4S 0A2
| | - Stefania Pizzirani
- School of Land Use and Environmental Change, University of the Fraser Valley, British Columbia, Canada, V2S 7M8
| |
Collapse
|
10
|
Requena-Sanchez N, Carbonel D, Moonsammy S, Demel L, Vallester E, Velásquez D, Toledo Cervantes JA, Díaz Núñez VL, Vásquez García R, Santa Cruz M, Visbal E, Ng KTW. COVID-19 impacts on household solid waste generation in six Latin American countries: a participatory approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:155. [PMID: 36441286 PMCID: PMC9702680 DOI: 10.1007/s10661-022-10771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The COVID-19 pandemic has greatly impacted the Americas, the continent with the highest number of COVID-related deaths according to WHO statistics. In Latin America, strict confinement conditions at the beginning of the pandemic put recycling activity to a halt and augmented the consumption of plastic as a barrier to stop the spread of the virus. The lack of data to understand waste management dynamics complicates waste management strategy adjustments aimed at coping with COVID-19. As a novel contribution to the waste management data gap for Latin America, this study uses a virtual and participatory methodology that collects and generates information on household solid waste generation and composition. Data was collected between June and November 2021 in six countries in Latin America, with a total of 503 participants. Participants indicated that the pandemic motivated them to initiate or increase waste reduction (41%), waste separation (40%), and waste recovery (33%) activities. Forty-three percent of participants perceived an increase in total volume of their waste; however, the quantitative data showed a decrease in household waste generation in Peru (-31%), Honduras (-25%), and Venezuela (-82%). No changes in waste composition were observed. Despite the limited sample size, this data provides a much-needed approximation of household waste generation and composition in the pandemic situation during 2021.
Collapse
Affiliation(s)
- Norvin Requena-Sanchez
- Integrated Waste Management for Sustainable Development Group, Faculty of Environmental Engineering, National University of Engineering, 210 Túpac Amaru Ave, Rímac, Lima, Peru
| | - Dalia Carbonel
- Integrated Waste Management for Sustainable Development Group, Faculty of Environmental Engineering, National University of Engineering, 210 Túpac Amaru Ave, Rímac, Lima, Peru
| | - Stephan Moonsammy
- Department of Environmental Studies, Faculty of Earth and Environmental Sciences, University of Guyana, Turkeyen Campus, P. O. Box 10 1110, Georgetown, Guyana
| | - Larissa Demel
- United Nations Development Program, Casa de las Naciones Unidas, Edificio # 129, Ciudad del Saber, Panama City, Panama
| | - Erick Vallester
- Technological University of Panama, Avenida Universidad Tecnológica de Panamá, Vía Puente Centenario, Campus Metropolitano Víctor Levi Sasso, Panama City, Panama
| | - Diana Velásquez
- National Autonomous University of Honduras, Bulevar Suyapa, Tegucigalpa, Honduras
| | | | | | - Rosario Vásquez García
- Daniel Alcides Carrion National University, Av. Los Próceres 703, Yanacancha, Cerro de Pasco, Peru
| | - Melissa Santa Cruz
- Intercultural National University Fabiola Salazar Leguia From Bagua, Jirón Ancash N° 520 Bagua, Amazonas, Peru
| | - Elsy Visbal
- Litoral Headquarters, Simón Bolívar University, Camurí Grande, Edo. Vargas Parroquia Naiguatá, La Guaira, Venezuela
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK Canada
| |
Collapse
|
11
|
Javid F, Xin X, Anderson WA, Derraik JG, Anderson YC, Baroutian S. Deconstruction and valorisation of a mixture of personal protective equipment using hydrothermal processing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Javid F, Xin X, Derraik JGB, Anderson WA, Anderson Y, Baroutian S. Hydrothermal deconstruction of single-use personal protective equipment during the COVID-19 pandemic. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:178-187. [PMID: 36108536 PMCID: PMC9464585 DOI: 10.1016/j.wasman.2022.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To minimise the transmission of the SARS-CoV-2 virus, there has been a substantial increase in the production and usage of synthetic personal protective equipment (PPE) globally. Consequently, single-use PPE have been widely adopted without appropriate regulations for their disposal, leading to extensive environmental contamination worldwide. This study investigates the non-catalytic hydrothermal deconstruction of different PPE items, including isolation gowns, gloves, goggles, face shields, surgical masks, and filtering-facepiece respirators. The selected PPE items were subjected to hydrothermal deconstruction for 90 min in the presence of 30-bar initial oxygen pressure, at temperatures ranging between 250 °C and 350 °C. The solid content in form of total suspended solids (TSS) was reduced up to 97.6%. The total chemical oxygen demand (tCOD) and soluble chemical oxygen demand (sCOD) decreased with increasing deconstruction temperature, and at 350 °C the lowest tCOD and sCOD content of 546.6 mg/L and 470 mg/L, respectively, was achieved. Short-chained volatile fatty acids were produced after 90 min of deconstruction, predominantly acetic acid at concentrations up to 8974 mg/L. Ammonia nitrogen content (NH3-N) of up to 542.6 mg/L was also detected. Carbon dioxide (CO2) and unreacted oxygen (O2) were the main gaseous by-products at up to 15.6% (w/w) and 88.7% (w/w), respectively. The findings suggest that non-catalytic hydrothermal deconstruction is a viable option to process and manage PPE waste.
Collapse
Affiliation(s)
- Faisal Javid
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Xing Xin
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - José G B Derraik
- Department of Paediatrics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - William A Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yvonne Anderson
- Department of Paediatrics, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Saeid Baroutian
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Wang Z, An C, Lee K, Chen X, Zhang B, Yin J, Feng Q. Physicochemical change and microparticle release from disposable gloves in the aqueous environment impacted by accelerated weathering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154986. [PMID: 35395312 DOI: 10.1016/j.scitotenv.2022.154986] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 05/24/2023]
Abstract
The explosive growth of disposable gloves usage in cities around the world has posed a considerable risk to municipal solid management and disposal during the COVID-19 pandemic. The lack of the environmental awareness leads to glove waste being discarded randomly and ending up in the soil and/or the ocean ecosystem. To explore the physicochemical changes and environmental behaviors of disposable glove wastes in the aqueous environment, three kinds of glove (latex, nitrile and vinyl) were investigated. The results showed that the physicochemical characteristics of disposable gloves made of different materials were altered to different degrees by UV weathering. Nitrile gloves were more stable than latex and vinyl gloves after being exposed to weathering conditions. Although the chemical structures were not clearly demonstrated through FTIR after weathering, the SEM results showed significant microscopic changes on the surfaces of the gloves. Analysis of the leachate results showed that UV weathered gloves released leachable substances, including microparticles, organic matter, and heavy metals. Latex gloves were more likely to release microparticles and other substances into the water after UV weathering. The release of microparticles from gloves can also be impacted by sand abrasion. The appropriate strategy needs to be developed to mitigate the environmental impact caused by the discarded gloves.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada.
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, K1A 0E6, Canada
| | - Xiujuan Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada
| | - Jianan Yin
- Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, S4S 0A2, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| |
Collapse
|
14
|
Singh M, Karimi N, Ng KTW, Mensah D, Stilling D, Adusei K. Hospital waste generation during the first wave of COVID-19 pandemic: a case study in Delhi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50780-50789. [PMID: 35239117 PMCID: PMC8892816 DOI: 10.1007/s11356-022-19487-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/24/2022] [Indexed: 06/06/2023]
Abstract
In this study, the hospital waste generation rates and compositions in Delhi were examined temporally and spatially during the first COVID-19 wave of April 2020. A total of 11 representative hospitals located in five districts were considered. The pre-COVID hospital waste generation rates were relatively consistent among the districts, ranging from 15 to 23 tonne/month. It is found that the number of hospital beds per capita may not be a significant factor in the hospital waste quantity. Strong seasonal variations were not observed. All districts experienced a drastic decrease in generation rates during the 1-month lockdown. The average rates during the COVID period ranged from 12 to 24 tonne/month. Bio-contaminated and disposable medical product wastes were the most common waste in Delhi's hospitals, representing 70-80% by weight. The changes in waste composition were however not spatially consistent. The lockdown appeared to have had a higher impact on hospital waste generation rate than on waste composition. The findings are important as the design and operation of a waste management system are sensitive to both waste quantity and quality. Waste records at source helped to minimize waste data uncertainties and allowed a closer examination of generation trends.
Collapse
Affiliation(s)
- Mayank Singh
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Nima Karimi
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Kelvin Tsun Wai Ng
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada.
| | - Derek Mensah
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Denise Stilling
- Industrial Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Kenneth Adusei
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, S4S 0A2, Canada
| |
Collapse
|
15
|
Osra F, Morsy EA, Abd El-Rahim IH. Guidance plans for solid waste management during COVID-19 in Makkah, Saudi Arabia. ARABIAN JOURNAL OF GEOSCIENCES 2021; 14:1466. [PMCID: PMC8299739 DOI: 10.1007/s12517-021-07990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The COVID-19 pandemic has emphasized disasters related to environmental topics, human health, social lifestyles, and economic systems around the world. COVID-19 may further spread through municipal solid waste (MSW), if it is collected, handled, transported, or disposed in an improper way. The current paper provides an overview of the multiple challenges that COVID-19 has introduced to the various tasks of MSW management including the impact of the implemented precautionary measures on MSW management, priorities and hierarchy of MSW, direct impact on the constitution, and characterization of MSW in Makkah, Saudi Arabia, based on waste management characterization guidance. In addition, specific and alternative guidance plans for the potential critical points of the infection were suggested to protect public health during the pandemic. The results of the current study revealed that the hierarchical system of MSW was modified under pandemic conditions. Implementation of control measures in Makkah has led to a change of lifestyle, which resulted in a physical change of the MSW constitution in Makkah, with the following average rates: organic matter, 57%; plastics, 31%; paper and cardboard, 9%; metals, 1%; glass, 1%; and wood, 1%. In conclusion, a specific guidance plan for MSW management during the COVID-19 pandemic was developed, aimed at handlers, pickers, collection, transportation, transfer stations, and MSW disposal. Such a guidance plan may play a vital role in controlling the pandemic, especially in the outdoor environment. The suggested guidance plan describes and specifies structured and ordered practices of MSW management in Makkah during COVID-19 and other pandemics.
Collapse
Affiliation(s)
- Faisal Osra
- Civil Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Essam A. Morsy
- Department of Environmental and Health Research, Umm Al-Qura University, P.O. Box 6287, Makkah, 21955 Saudi Arabia
- Geophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ibrahim H.A. Abd El-Rahim
- Department of Environmental and Health Research, Umm Al-Qura University, P.O. Box 6287, Makkah, 21955 Saudi Arabia
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| |
Collapse
|