1
|
Farhan M, Akhtar S, Ahmad I, Maryam, Hussain H, Yasin M, Farooqi MA, Zhang S. Assessing the potential of nano-formulated chlorfenapyr and clothianidin insecticides-treated sugar baits against Anopheles funestus, Anopeles coluzzii and Culex quinquefasciatus mosquitoes. Acta Trop 2024; 256:107269. [PMID: 38821147 DOI: 10.1016/j.actatropica.2024.107269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Mosquitoes serve as vectors for various diseases like malaria, dengue fever, yellow fever, and lymphatic filarial diseases causing significant global health problems, highlighting the importance of vector control. The study was conducted to assess the effectiveness of nanoformulated clothianidin and chlorfenapyr insecticides treated with ATSB in controlling three mosquito strains. The development of a natural thiolated polymer-coated ATSB nano formulation involved incorporating nano-carriers to deliver insecticides. Field- collected mosquito strains were subjected to laboratory-based bioassays using 1 % and 1.5 % concentrations of each conventionally used and nanoformulated insecticide with ATSB solution. Adult mosquitoes were left overnight to contact with N-ATSB and efficacy was recorded after 36 and 72 h. The results showed that nanoformulated chlorfenapyr was significantly more effective as compared to clothianidin against An. funestus and Cx. quinquefasciatus but the results were not significantly different against An. coluzzii (100 %). An. coluzzii was found to be the most susceptible strain followed by An. funestus and showed 100 % and ∼ 98 % mortality against nanoformulated chlorfenapyr (1.5 %). Nanoformulated clothianidin induced more than 92 % and ∼ 100 % mortality against An. funestus and An. coluzzii respectively. However, Cx. quinquefasciatus significantly showed less mortality against nanoformulated clothianidin (88 %) and chlorfenapyr (>95 %) as compared to Anopheline strains. Furthermore, results indicate that nanoformulated insecticides significantly caused greater and prolonged fatality as compared to conventional form, suggesting effective and suitable strategies for vector management.
Collapse
Affiliation(s)
- Muhammad Farhan
- College of Plant Protection, Yangzhou University, 225009, China
| | - Sohail Akhtar
- Department of Entomology, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Maryam
- Department of Botany, The Government Sadiq College Women University Bahawalpur, 63100, Pakistan
| | - Hammad Hussain
- School of Horticulture and Landscape Architecture, Yangzhou University, 225009, China
| | - Muhammad Yasin
- Department of Entomology, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | - Shuai Zhang
- College of Plant Protection, Yangzhou University, 225009, China.
| |
Collapse
|
2
|
Shourove JH, Meem FC, Chowdhury RS, Eti SA, Samaddar M. Biocontrol agents and their potential use as nano biopesticides to control the tea red spider mite (Oligonychus coffeae): A comprehensive review. Heliyon 2024; 10:e34605. [PMID: 39148997 PMCID: PMC11325067 DOI: 10.1016/j.heliyon.2024.e34605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Tea red spider mite (TRSM), Oligonychus coffeae Nietner, is one of the major pests that cause considerable crop losses in all tea-growing countries. TRSM management often involves the use of multiple chemical pesticides that are linked to human health risks and environmental pollution. Considering these critical issues, employing biocontrol agents is a potential green approach that may replace synthetic pesticides. This review study aims to discuss the efficacy of plant extracts, entomopathogenic microorganisms, and predators in controlling TRSM. This study includes 44 botanical extracts, 14 microbial species, and 8 potential predators used to control TRSM, along with their respective modes of action. Most of the botanical extracts have ovicidal, adulticidal, and larvicidal activity, ranging from 80 to 100 %, attributed to bioactive compounds such as phenols, alcohols, alkaloids, tannins, and other secondary metabolites. Among microbial pesticides, Purpureocillium lilacinum, Metarhizium robertsii, Aspergillus niger, Pseudomonas fluorescens, and Pseudomonas putida are highly effective against TRSM without causing any harm to the nontarget beneficial insects. Besides, some predators, including green lacewings, ladybirds, and phytoseiid mites have the potential to control TRSM. Employing these biocontrol agents simultaneously in tea plantations could be more effective in preventing TRSM. Nevertheless, their high biodegradability rate, uneven distribution, and uncontrolled release pose challenges for large-scale field applications. This study also explores how nanotechnology can enhance sustainability by addressing the limitations of biopesticides in field conditions. This review study could contribute to the search for potential biocontrol agents and the development of commercial nano biopesticides to control TRSM.
Collapse
Affiliation(s)
- Jahid Hasan Shourove
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fariha Chowdhury Meem
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Razia Sultana Chowdhury
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamima Akther Eti
- Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Mitu Samaddar
- Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
3
|
Giuliano G, Campolo O, Forte G, Urbaneja A, Pérez-Hedo M, Latella I, Palmeri V, Giunti G. Insecticidal Activity of Allium sativum Essential Oil-Based Nanoemulsion against Spodoptera littoralis. INSECTS 2024; 15:476. [PMID: 39057209 PMCID: PMC11277290 DOI: 10.3390/insects15070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Spodoptera littoralis, commonly known as the Egyptian or African cotton leafworm, is a significant agricultural threat. It is widely distributed in Africa, Mediterranean Europe, and Middle Eastern countries. This polyphagous pest infests numerous crop plants across 44 families, including cotton, soybeans, alfalfa, sweet potato, pepper, eggplant, tomato, maize, lettuce, strawberry, wheat, and hibiscus. The damage caused by S. littoralis on different plant organs, such as young leaves, shoots, stalks, bolls, buds, and fruits, often determines substantial product losses. Current control strategies predominantly rely on synthetic insecticides, which, despite their efficacy, have notable drawbacks, including insecticide resistance, environmental contamination, consumer concerns, and adverse effects on non-target organisms and beneficial insects. In response to these challenges, in this study, we developed and evaluated a garlic EO-based nanoemulsion with a high EO concentration (15%) and low surfactant content to mitigate the possible negative impact on plants and to enhance efficacy against S. littoralis larvae. Laboratory bioassays demonstrated promising larvicidal activity and reduced larval feeding, although some phytotoxicity symptoms were observed. This study underscores the potential of botanical insecticides as sustainable alternatives to synthetic chemicals, emphasizing the importance of balancing efficacy with environmental and ecological considerations in pest management strategies.
Collapse
Affiliation(s)
- Gaetano Giuliano
- Department of Agriculture, University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy; (G.G.); (O.C.); (I.L.); (V.P.)
| | - Orlando Campolo
- Department of Agriculture, University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy; (G.G.); (O.C.); (I.L.); (V.P.)
| | - Giuseppe Forte
- Agrigeos s.r.l., Via Giordano Bruno 136, 95131 Catania, Italy;
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Entomología, 46113 Moncada, Spain (M.P.-H.)
| | - Meritxell Pérez-Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Unidad de Entomología, 46113 Moncada, Spain (M.P.-H.)
| | - Ilaria Latella
- Department of Agriculture, University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy; (G.G.); (O.C.); (I.L.); (V.P.)
| | - Vincenzo Palmeri
- Department of Agriculture, University of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy; (G.G.); (O.C.); (I.L.); (V.P.)
| | - Giulia Giunti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
4
|
Awad M, Alfuhaid NA, Amer A, Hassan NN, Moustafa MAM. Towards Sustainable Pest Management: Toxicity, Biochemical Effects, and Molecular Docking Analysis of Ocimum basilicum (Lamiaceae) Essential Oil on Agrotis ipsilon and Spodoptera littoralis (Lepidoptera: Noctuidae). NEOTROPICAL ENTOMOLOGY 2024; 53:669-681. [PMID: 38478300 PMCID: PMC11074029 DOI: 10.1007/s13744-024-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/07/2024] [Indexed: 05/07/2024]
Abstract
Over the last decade, essential oils (EOs) have become potential ingredients for insecticide formulations due to their widespread availability and perceived safety. Therefore, this study aimed to evaluate the toxicity and biochemical efficacy of basil (Ocimum basilicum) (Lamiaceae) against two destructive pests Noctuidae, Agrotis ipsilon (Hufnagel) and Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). In addition, a molecular docking study was performed to gain insight into the binding pattern between glutathione S-transferase (GST) and linalool, the main component of EO. GC-MS analysis of O. basilicum EO revealed that linalool is the most abundant compound (29.34%). However, the toxicity tests showed no significant difference between the values of LC50 of O. basilicum EO to A. ipsilon and S. littoralis. On the other hand, the sublethal experiments indicated that treating the second instar larvae with LC15 or LC50 values of O. basilicum EO significantly prolonged the larval duration in both insects, compared to the control. Regarding the biochemical effect of O. basilicum EO, the treatments significantly impacted the activity of detoxification enzymes. A notable elevation in glutathione S-transferase (GST) activity was recorded in A. ipsilon larvae compared with a reduction in S. littoralis larvae. The molecular docking analysis revealed that linalool bonded with the amino acid serine (SER 9) of GST, indicating its binding affinity with the enzyme. The obtained results could offer valuable insights into the mode of action of O. basilicum and can encourage the adoption of sustainable pest control practices that incorporate essential oils.
Collapse
Affiliation(s)
- Mona Awad
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt
| | - Nawal Abdulaziz Alfuhaid
- Dept of Biology, College of Science and Humanities, Prince Sattam Bin Abdulziz Univ, Al-Kharj, Saudi Arabia
| | - Alia Amer
- Medicinal and Aromatic Plants Dept, Horticulture Research Institute, Agricultural Research Center, Giza, Egypt
| | - Nancy N Hassan
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt
| | - Moataz A M Moustafa
- Dept of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo Univ, Giza, Egypt.
| |
Collapse
|
5
|
Arantes ACS, Ribeiro JCS, Soares DS, Reis AC, Cardoso MDG, Remedio RN. Alpha- and beta-pinene isomers act differently to control Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res 2024; 123:164. [PMID: 38502307 DOI: 10.1007/s00436-024-08187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
The cattle tick Rhipicephalus microplus is an ectoparasite of high importance in veterinary medicine and public health. Since synthetic chemicals used to control these ticks can select resistant strains and cause toxic effects in their hosts, there is a need to identify effective substances with fewer adverse effects. For this reason, we investigated the effects of alpha- and beta-pinene, known for their various biological effects, on the mortality and reproductive performance of R. microplus engorged female ticks. The products were diluted in a 2% Tween 80 aqueous solution. The ticks were first weighed and then immersed in the test solutions for five minutes. Then, they were dried with paper towels and fixed dorsoventrally in Petri dishes, totalling five treatment groups for each pinene and a control group treated with the solvent alone. The ticks were monitored daily for mortality, and their eggs were collected and weighed. The larval hatching rate was estimated, and the pre-oviposition and incubation periods were determined. From these data, the following parameters were calculated: egg production index, fertility rate, estimated reproduction rate, percentages of reduction in oviposition and hatching, and product efficacy. Alpha-pinene showed better results at higher concentrations, unlike beta-pinene, which was more effective at lower concentrations. The effectiveness of alpha-pinene was 74% at a concentration of 14.0 μL/mL, while beta-pinene showed 78% efficacy at 2.0 μL/mL. The results indicated for the first time different effects of two isomers in ticks, suggesting that these compounds act on R. microplus females in different ways.
Collapse
Affiliation(s)
| | | | - Dásia Silveira Soares
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Aline Chaves Reis
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Rafael Neodini Remedio
- Department of Medicine, Federal University of Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
6
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
7
|
Farhan M, Zhao C, Akhtar S, Ahmad I, Jilong P, Zhang S. Assessment of Nano-Formulated Conventional Insecticide-Treated Sugar Baits on Mosquito Control and the Effect on Non-Target Aphidophagous Coccinella septempunctata. INSECTS 2024; 15:70. [PMID: 38249076 PMCID: PMC10816155 DOI: 10.3390/insects15010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Mosquitoes, as disease vectors causing global morbidity and mortality through diseases like malaria, dengue, and Zika, necessitate mosquito population control methods. This study investigated the efficacy of nano-formulated insecticide-based sugar baits in controlling Anopheles gambiae populations and assessed their potential non-target impact on Coccinella septempunctata. This laboratory-based study employed thiolated polymer-coated attractive toxic sugar bait (ATSB) nano-formulations, delivering pesticides via nano-carriers. Adult and larvae populations of insects were collected from rice and cotton fields subjected to bioassays with 0.5% and 1% concentrations of each nano-formulated and conventional insecticide within ATSB solution, alongside a control 100% attractive sugar bait (ASB). Mosquitoes interacted overnight with insecticide-treated baits, and mortality was assessed. Further observations up to 72 h were conducted for potential delayed toxic effects. Results highlighted nano-ATSB carbosulfan's effectiveness, particularly among organophosphates and pyrethroids. Among pyrethroids, nano-ATSB cypermethrin exhibited high efficacy, while Deltamethrin displayed lower mortality. Among organophosphates, nano-ATSB chlorpyrifos induced substantial mortality. The nano-formulations of insecticide were harmless against C. septempunctata compared to their conventional form. Nano-formulations demonstrated enhanced mortality rates and prolonged efficacy against mosquitoes, having a benign impact on non-target beetles. We expect these results to aid in developing effective plant protection products suitable for IPM practices.
Collapse
Affiliation(s)
- Muhammad Farhan
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (P.J.)
| | - Chenchen Zhao
- College of Plant Protection, Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sohail Akhtar
- Department of Entomology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ishtiaq Ahmad
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Pan Jilong
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (P.J.)
| | - Shuai Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (M.F.); (P.J.)
| |
Collapse
|
8
|
Araujo-Yépez LS, Tigrero-Salas JO, Delgado-Rodríguez VA, Aguirre-Yela VA, Villota-Méndez JN. Sulfur nanocomposites with insecticidal effect for the control of Bactericera cockerelli. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:1106-1115. [PMID: 38025200 PMCID: PMC10667717 DOI: 10.3762/bjnano.14.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
The purpose of this research was to synthesize nanocomposites consisting of sulfur nanoparticles coated with eucalyptus and rosemary essential oils to determine the insecticidal effect in the control of nymphs of paratrioza (Bactericera cockerelli (Sulc) (Hemiptera: Triozidae)) in potato crops. A solution of thiosulfate was reduced to elemental sulfur, and the sulfur nanoparticles were coated with eucalyptus and rosemary essential oils with the three concentrations of 0.25%, 0.5%, and 0.75%. The samples were characterized by UV-visible spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. The insecticidal efficacy of the nanocomposites was evaluated in the entomology laboratory 24, 48, and 72 h after application. Furthermore, efficacy was compared to the commercial insecticide thiamethoxam (0.25%) and a control. The results show that eucalyptus nanocomposites with oil concentrations of 0.25%, 0.5%, and 0.75% and rosemary nanocomposites with an oil concentration of 0.5% have an insecticidal efficacy of 100% for the control of insect nymphs 24 h after application. The insecticidal efficacy of rosemary nanocomposites with oil concentrations of 0.25% and 0.75% increases over time and reaches 100% at 24 and 72 h, respectively. The synthesized nanocomposites are more effective in controlling nymphs of paratrioza than the commercial insecticide thiamethoxam; thus, they could be used for the development of new insecticides.
Collapse
Affiliation(s)
- Lany S Araujo-Yépez
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador
| | - Juan O Tigrero-Salas
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador
| | - Vicente A Delgado-Rodríguez
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador
| | - Vladimir A Aguirre-Yela
- Centro de Nanociencia y Nanotecnología (CENCINAT), Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador
| | - Josué N Villota-Méndez
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas – ESPE, Av. General Rumiñahui 171-5-231B, Sangolquí, PO Box 171-5-231B, Ecuador
| |
Collapse
|
9
|
Machado S, Pereira R, Sousa RMOF. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:166401. [PMID: 37597566 DOI: 10.1016/j.scitotenv.2023.166401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The world's population is continuously increasing; therefore, food availability will be one of the major concerns of our future. In addition to that, many practices and products used, such as pesticides and fertilizers have been shown harmful to the environment and human health and are assumed as being one of the main factors responsible for the loss of biodiversity. Also, climate change could agravate the problem since it causes unpredictable variation of local and regional climate conditions,which frequently favor the growth of diseases, pathogens and pest growth. The use of natural products, like essential oils, plant extracts, or substances of microbial-origin in combination with nanotechnology is one suitable way to outgrow this problem. The most often employed natural products in research studies to date include pyrethrum extract, neem oil, and various essential oils, which when enclosed shown increased resistance to environmental factors. They also demonstrated insecticidal, antibacterial, and fungicidal properties. However, in order to truly determine if these products, despite being natural, would be hazardous or not, testing in non-target organisms, which are rare, must start to become a common practice. Therefore, this review aims to present the existing literature concerning nanoformulations of biopesticides and a standard definition for nanobiopesticides, their synthesis methods and their possible ecotoxicological impacts, while discussing the regulatory aspects regarding their authorization and commercialization. As a result of this, you will find a critical analysis in this reading. The most obvious findings are that i) there are insufficient reliable ecotoxicological data for risk assessment purposes and to establish safety doses; and ii) the requirements for registration and authorization of these new products are not as straightforward as those for synthetic chemicals and take a lot of time, which is a major challenge/limitation in terms of the goals set by the Farm to Fork initiative.
Collapse
Affiliation(s)
- Sofia Machado
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rose Marie O F Sousa
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007 Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences & INOV4AGRO, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Jahan N, Rasheed K, Rahman KU, Hazafa A, Saleem A, Alamri S, Iqbal MO, Rahman MA. Green inspired synthesis of zinc oxide nanoparticles using Silybum marianum (milk thistle) extract and evaluation of their potential pesticidal and phytopathogens activities. PeerJ 2023; 11:e15743. [PMID: 37601248 PMCID: PMC10434149 DOI: 10.7717/peerj.15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background The green approaches for the synthesis of nanoparticles are gaining significant importance because of their high productivity, purity, low cost, biocompatibility, and environmental friendliness. Methods The aim of the current study is the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using seed extracts of Silybum marianum, which acts as a reducing and stabilizing agent. central composite design (CCD) of response surface methodology (RSM) optimized synthesis parameters (temperature, pH, reaction time, plant extract, and salt concentration) for controlled size, stability, and maximum yields of ZnO-NPs. Green synthesized ZnO-NPs was characterized using UV-visible spectroscopy and Zetasizer analyses. Results The Zetasizer confirmed that green synthesized ZnO-NPs were 51.80 nm in size and monodispersed in nature. The UV-visible results revealed a large band gap energy in the visible region at 360.5 nm wavelength. The bioactivities of green synthesized ZnO-NPs, including antifungal, antibacterial, and pesticidal, were also evaluated. Data analysis confirmed that these activities were concentration dependent. Bio-synthesized ZnO-NPs showed higher mortality towards Tribolium castaneum of about 78 ± 0.57% after 72 h observation as compared to Sitophilus oryzae, which only displayed 74 ± 0.57% at the same concentration and time intervals. Plant-mediated ZnO-NPs also showed high potential against pathogenic gram-positive bacteria (Clavibacter michiganensis), gram-negative bacteria (Pseudomonas syringae), and two fungal strains such as Fusarium oxysporum, and Aspergillums niger with inhibition zones of 18 ± 0.4, 25 ± 0.4, 21 ± 0.57, and 19 ± 0.4 mm, respectively. Conclusion The results of this study showed that Silybum marianum-based ZnO-NPs are cost-effective and efficient against crop pests.
Collapse
Affiliation(s)
- Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Kousar Rasheed
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur- Rahman
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amna Saleem
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Omer Iqbal
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean university of China, Qingdao, China
| | - Md Atikur Rahman
- Grassland & Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| |
Collapse
|
11
|
Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, Batish DR. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2916. [PMID: 37631128 PMCID: PMC10458566 DOI: 10.3390/plants12162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.
Collapse
Affiliation(s)
- Ipsa Gupta
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Rishikesh Singh
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India;
| | - Mansi Sharma
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Kamaljit Grewal
- Department of Botany, Khalsa College for Women, Civil Lines, Ludhiana 141001, India;
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Daizy R. Batish
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| |
Collapse
|
12
|
Wu J, Cao Z, Hassan SSU, Zhang H, Ishaq M, Yu X, Yan S, Xiao X, Jin HZ. Emerging Biopharmaceuticals from Pimpinella Genus. Molecules 2023; 28:molecules28041571. [PMID: 36838559 PMCID: PMC9959726 DOI: 10.3390/molecules28041571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Evolved over eons to encode biological assays, plants-derived natural products are still the first dawn of drugs. Most researchers have focused on natural compounds derived from commonly used Pimpinella species, such as P. anisum, P. thellungiana, P. saxifrage, and P. brachycarpa, to investigate their antioxidant, antibacterial, and anti-inflammatory properties. Ethnopharmacological studies demonstrated that the genus Pimpinella has the homology characteristics of medicine and food and mainly in the therapy of gastrointestinal dysfunction, respiratory diseases, deworming, and diuresis. The natural product investigation of Pimpinella spp. revealed numerous natural products containing phenylpropanoids, terpenoids, flavonoids, coumarins, sterols, and organic acids. These natural products have the potential to provide future drugs against crucial diseases, such as cancer, hypertension, microbial and insectile infections, and severe inflammations. It is an upcoming field of research to probe a novel and pharmaceutically clinical value on compounds from the genus Pimpinella. In this review, we attempt to summarize the present knowledge on the traditional applications, phytochemistry, and pharmacology of more than twenty-five species of the genus Pimpinella.
Collapse
Affiliation(s)
- Jiajia Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Cao
- Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haozhen Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Ishaq
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shikai Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| | - Hui-Zi Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (X.X.); (H.-Z.J.); Tel./Fax: +86-21-34205989 (H.J.)
| |
Collapse
|
13
|
Šunjka D, Mechora Š. An Alternative Source of Biopesticides and Improvement in Their Formulation-Recent Advances. PLANTS (BASEL, SWITZERLAND) 2022; 11:3172. [PMID: 36432901 PMCID: PMC9694139 DOI: 10.3390/plants11223172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Plant protection in contemporary agriculture requires intensive pesticide application. Their use has enabled the increase in yields, simplifying cultivation systems and crop protection strategies, through successful control of harmful organisms. However, it has led to the accumulation of pesticides in agricultural products and the environment, contaminating the ecosystem and causing adverse health effects. Therefore, finding new possibilities for plant protection and effective control of pests without consequences for humans and the environment is imperative for agricultural production. The most important alternatives to the use of chemical plant protection products are biopesticides. However, in order to increase their application and availability, it is necessary to improve efficacy and stability through new active substances and improved formulations. This paper represents an overview of the recent knowledge in the field of biopesticides and discusses the possibilities of the use of some new active substances and the improvement of formulations.
Collapse
Affiliation(s)
- Dragana Šunjka
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Špela Mechora
- Agency for Radwaste Management, Litostrojska 58A, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Shah JA, Vendl T, Aulicky R, Frankova M, Stejskal V. Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview. Gels 2022; 8:gels8080522. [PMID: 36005123 PMCID: PMC9407565 DOI: 10.3390/gels8080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Insecticides and rodenticides form the basis of integrated pest management systems worldwide. As pest resistance continues to increase and entire groups of chemical active ingredients are restricted or banned, manufacturers are looking for new options for more effective formulations and safer application methods for the remaining pesticide ingredients. In addition to new technological adaptations of mainstream formulations in the form of sprays, fumigants, and dusts, the use of gel formulations is becoming increasingly explored and employed. This article summarizes information on the current and potential use of gel (including hydrogel) and paste formulations against harmful arthropods or rodents in specific branches of pest management in the agricultural, food, stored product, structural wood, urban, medical, and public health areas. Due to the worldwide high interest in natural substances, part of the review was devoted to the use of gels for the formulation of pesticide substances of botanical origin, such as essential or edible oils. Gels as emerging formulation of so called “smart insecticides” based on molecular iRNA disruptors are discussed.
Collapse
Affiliation(s)
- Jawad Ali Shah
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Tomas Vendl
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| | - Radek Aulicky
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Marcela Frankova
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
| | - Vaclav Stejskal
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic
- Correspondence: (T.V.); (V.S.); Tel.: +420-2-3302-2360 (T.V.); +420-2-3302-2217 (V.S.)
| |
Collapse
|
15
|
Functional Coatings by Natural and Synthetic Agents for Insect Control and Their Applications. COATINGS 2022. [DOI: 10.3390/coatings12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insect repellent textiles offer protection against disease-causing vectors such as mosquitoes, flies, and ticks. Protection is based on the incorporation of insect repellent compounds present in plant oil derivatives or synthetic oils. The effectiveness and application of natural insect repellents such as citronella grass, lemongrass, rosemary, peppermint, holy basil, tea tree, neem, lavender, thyme, lemon eucalyptus, clove, and cinnamon oils, as well as synthetic compounds permethrin, allethrin, malathion, DEET, DETA, IR3535, and picaridin, are compared here. The insect repellent and insecticidal effectiveness of natural compounds in their pure form are very low due to their high volatility. The effectiveness has been greatly improved through slow-release systems such as encapsulation of the essential oils and is comparable to synthetic compounds used for insect control purposes. Due to the lasting toxicity of synthetic compounds to humans and the environment, the use of natural compounds should become a more preferred method of insect control.
Collapse
|
16
|
Contact Toxicity and Ovideterrent Activity of Three Essential Oil-Based Nano-Emulsions against the Olive Fruit Fly Bactrocera oleae. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The control strategies for the olive crop key pest, Bactrocera oleae, involve synthetic chemical insecticides and few eco-sustainable alternatives, such as ovideterrents and lures. In the last few decades, the interest concerning the formulation of botanical based biopesticides increased, but little research investigated the suitability of these approaches for B. oleae control. This research aimed to investigate the residual contact toxicity and the oviposition deterrence of three essential oil (EO)-based nano-emulsions (Pimpinella anisum, Foeniculum vulgare, Mentha × piperita) against B. oleae adult flies. All the nano-emulsions possessed optimal physical characteristics, with droplets dimensions ranging from 115 to 152 nm and low PDI values (<0.2), even after 1 year of storage. Although no notable residual contact toxicity was noted, all the tested formulations reduced the number of oviposition puncture in no-choice tests (percent repellence: mint < fennel < anise). In choice trials, olives treated with fennel and anise EO-formulations at the highest concentration (7.5%, 75 g of EO/L) were less attractive respect to control fruits and a significant reduction of olive punctures was recorded. Nano-biopesticides are promising eco-friendly tools to integrate B. oleae pest management programs and to reduce the use of harmful conventional active ingredients.
Collapse
|
17
|
Nanotechnology-Based Bioactive Antifeedant for Plant Protection. NANOMATERIALS 2022; 12:nano12040630. [PMID: 35214959 PMCID: PMC8879102 DOI: 10.3390/nano12040630] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023]
Abstract
The productivity of vegetable crops is constrained by insect pests. The search for alternative insect pest control is becoming increasingly important and is including the use of plant-derived pesticides. Plant-derived pesticides are reported as effective in controlling various insect pests through natural mechanisms, with biodegradable organic materials, diverse bioactivity, and low toxicity to non-target organisms. An antifeedant approach for insect control in crop management has been comprehensively studied by many researchers, though it has only been restricted to plant-based compounds and to the laboratory level at least. Nano-delivery formulations of biopesticides offer a wide variety of benefits, including increased effectiveness and efficiency (well-dispersion, wettability, and target delivery) with the improved properties of the antifeedant. This review paper evaluates the role of the nano-delivery system in antifeedant obtained from various plant extracts. The evaluation includes the research progress of antifeedant-based nano-delivery systems and the bioactivity performances of different types of nano-carrier formulations against various insect pests. An antifeedant nano-delivery system can increase their bioactivities, such as increasing sublethal bioactivity or reducing toxicity levels in both crude extracts/essential oils (EOs) and pure compounds. However, the plant-based antifeedant requires nanotechnological development to improve the nano-delivery systems regarding properties related to the bioactive functionality and the target site of insect pests. It is highlighted that the formulation of plant extracts creates a forthcoming insight for a field-scale application of this nano-delivery antifeedant due to the possible economic production process.
Collapse
|
18
|
Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, Bhardwaj AK, Kashyap PL, Kumar S, Singh GP. Nanomaterials for Postharvest Management of Insect Pests: Current State and Future Perspectives. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.811056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Globally, between one quarter and one-third of total grains produced each year are lost during storage mainly through infestation of insect pests. Among the available control options such as chemical and physical techniques, fumigation with aluminum phosphide (AlP) is so far considered the best control strategy against storage insect pests. However, these insect pests are now developing resistance against AIP due to its indiscriminate use due to non-availability of any effective alternative control option. Resistance to AIP among storage insect pests is increasing, and its inhalation has shown adverse effects on animals and human beings. Nanotechnology has opened up a wide range of opportunities in various fields such as agriculture (pesticides, fertilizers, etc.), pharmaceuticals, and electronics. One of the applications of nanotechnology is the usage of nanomaterial-based insecticide formulations for mitigating field and storage insect pests. Several formulations, namely, nanoemulsions, nanosuspensions, controlled release formulations, and solid-based nanopesticides, have been developed with different modes of action and application. The major advantage is their small size which helps in proper spreading on the pest surface, and thus, better action than conventional pesticides is achieved. Besides their minute size, these have no or reduced harmful effects on non-target species. Nanopesticides can therefore provide green and efficient alternatives for the management of insect pests of field and storage. However, an outcry against the utilization of nano-based pesticides is also revealed. It is considered by some that nano-insecticides may also have hazardous effects on humans as well as on the environment. Due to limited available data, nanopesticides have become a double-edged weapon. Therefore, nanomaterials need to be evaluated extensively for their large-scale adoption. In this article, we reviewed the nanoformulations that are developed and have proved effective against the insect pests under postharvest storage of grains.
Collapse
|
19
|
Variations in Essential Oil Chemical Composition and Biological Activities of Cryptomeria japonica (Thunb. ex L.f.) D. Don from Different Geographical Origins—A Critical Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The scientific community is paying increasing attention to plant waste valorization, and also to “greener” practices in the agriculture, food and cosmetic sectors. In this context, unused forest biomass (e.g., leaves, seed cones, branches/twigs, bark and sapwood) of Cryptomeria japonica, a commercially important tree throughout Asia and the Azores Archipelago (Portugal), is currently waste/by-products of wood processing that can be converted into eco-friendly and high added-value products, such as essential oils (EOs), with social, environmental and economic impacts. Plant-derived EOs are complex mixtures of metabolites, mostly terpenes and terpenoids, with valuable bioactivities (e.g., antioxidant, anti-inflammatory, anticancer, neuroprotective, antidepressant, antimicrobial, antiviral and pesticide), which can find applications in several industries, such as pharmaceutical, medical, aromatherapy, food, cosmetic, perfumery, household and agrochemical (e.g., biopesticides), with manifold approaches. The EOs components are also of value for taxonomic investigations. It is known that the variation in EOs chemical composition and, consequently, in their biological activities and commercial use, is due to different exogenous and endogenous factors that can lead to ecotypes or chemotypes in the same plant species. The present paper aims to provide an overview of the chemical composition, biological properties and proposals of valorization of C. japonica EO from several countries, and also to indicate gaps in the current knowledge.
Collapse
|