1
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
2
|
Zabihi O, Patrick R, Ahmadi M, Forrester M, Huxley R, Wei Y, Hadigheh SA, Naebe M. Mechanical upcycling of single-use face mask waste into high-performance composites: An ecofriendly approach with cost-benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170469. [PMID: 38311090 DOI: 10.1016/j.scitotenv.2024.170469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
The COVID-19 pandemic created an unprecedented demand for PPE, with single-use face masks emerging as a critical tool in containing virus transmission. However, the extensive use and improper disposal of these single-use face masks, predominantly composed of non-biodegradable plastics, has exacerbated environmental challenges. This research presents an innovative method for mechanically upcycling PPEs used in medical sectors i.e. single use face masks. The study investigates a facile approach for reclamation of infection-free and pure polypropylene (PP) plastic from discarded single use face masks (W-PP) and blends it with various vegetable oil percentages (5, 10 and 20 %), resulting in a versatile material suitable for various applications. Melt flow index, rheological behaviour, DSC and FTIR were employed to investigate the effect of vegetable oil/radical initiator through chemical grafting on W-PP properties. The results demonstrate significant enhancements in the tensile strength and modulus of W-PP when blended with vegetable oil and a radical initiator. There was a marked increase in tensile strength (33 %) and strain (55 %) compared to untreated W-PP, rendering W-PP both robust and flexible. Furthermore, we employed this upcycled W-PP in the fabrication of glass fibre-reinforced composites, resulting in notable enhancements in both tensile strength and impact resistance. The upcycled W-PP demonstrates excellent potential for various applications, such as sheet forming and 3D printing, where the non-brittleness of plastics plays a pivotal role in manufacturing high-quality products. The cost-benefit analysis of this approach underscores the potential of upcycling PPE waste as a sustainable solution to mitigate plastic pollution and conserve valuable resources. The applications of this upcycled material span a wide range of industries, including automotive composites, packaging, and 3D printing.
Collapse
Affiliation(s)
- Omid Zabihi
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Rebecca Patrick
- School of Health and Social Development, Faculty of Health, Deakin University, Burwood, Victoria, Australia; Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Mojtaba Ahmadi
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Mike Forrester
- School of Health and Social Development, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Rachel Huxley
- Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Yaning Wei
- School of Civil Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - S Ali Hadigheh
- School of Civil Engineering, Faculty of Engineering, The University of Sydney, NSW 2006, Australia
| | - Minoo Naebe
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
3
|
Abbate S, Centobelli P, Cerchione R, Nadeem SP, Riccio E. Sustainability trends and gaps in the textile, apparel and fashion industries. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2023; 26:1-28. [PMID: 36788931 PMCID: PMC9912224 DOI: 10.1007/s10668-022-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/25/2022] [Indexed: 06/18/2023]
Abstract
Textile, apparel, and fashion (TAF) industries contribute significantly to global environmental pollution at every point of the supply chain. Clothing manufacturing and transportation produce a large volume of waste and high greenhouse gas emissions, often taking advantage of cheap labor in developing countries. As a result, stakeholders are becoming more aware of the effect of the textile, apparel, and fashion industries on the climate and human rights, thus pushing businesses to mitigate their environmental damage. This paper offers a systematic literature review of sustainability trends in the TAF industries in the last 20 years. Bibliometric tools are also used to support the content analysis of the papers. The findings reveal three primary research areas in the TAF context: consumers' behaviour towards sustainable clothing, circular economy initiatives, and sustainability challenges across the whole supply chain. As a result, this study highlights literature gaps and provides future research suggestions for each identified research cluster. In addition, drivers and barriers to implementing corporate social responsibility and circular economy practices are identified. Consequently, this study will help researchers and academicians work in this area to identify unexplored sub-fields, which reflect some potential investigation areas for expanding scientific literature on the topic. Finally, this study supports practitioners and managers in exploring the main research themes addressed in the scientific field, providing knowledge to improve and align business models with current sustainability trends.
Collapse
Affiliation(s)
- Stefano Abbate
- Department of Industrial Engineering, University of Naples Federico II, P.Le Tecchio 80, 80125 Naples, Italy
| | - Piera Centobelli
- Department of Industrial Engineering, University of Naples Federico II, P.Le Tecchio 80, 80125 Naples, Italy
| | - Roberto Cerchione
- Department of Industrial Engineering, University of Naples Parthenope, Centro Direzionale Di Napoli, Isola C4, 80143 Naples, Italy
| | - Simon Peter Nadeem
- Centre for Supply Chain Improvement, University of Derby, Kedleston Road, Derby, DE221GB UK
| | - Emanuela Riccio
- Department of Industrial Engineering, University of Naples Parthenope, Centro Direzionale Di Napoli, Isola C4, 80143 Naples, Italy
| |
Collapse
|
4
|
Wang AB, Zhang X, Gao LJ, Zhang T, Xu HJ, Bi YJ. A Review of Filtration Performance of Protective Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2346. [PMID: 36767714 PMCID: PMC9915213 DOI: 10.3390/ijerph20032346] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Masks are essential and effective small protective devices used to protect the general public against infections such as COVID-19. However, available systematic reviews and summaries on the filtration performance of masks are lacking. Therefore, in order to investigate the filtration performance of masks, filtration mechanisms, mask characteristics, and the relationships between influencing factors and protective performance were first analyzed through mask evaluations. The summary of filtration mechanisms and mask characteristics provides readers with a clear and easy-to-understand theoretical cognition. Then, a detailed analysis of influencing factors and the relationships between the influencing factors and filtration performance is presented in. The influence of the aerosol size and type on filtration performance is nonlinear and nonconstant, and filtration efficiency decreases with an increase in the gas flow rate; moreover, fitness plays a decisive role in the protective effects of masks. It is recommended that the public should wear surgical masks to prevent COVID-19 infection in low-risk and non-densely populated areas. Future research should focus on fitness tests, and the formulation of standards should also be accelerated. This paper provides a systematic review that will be helpful for the design of masks and public health in the future.
Collapse
Affiliation(s)
- Ao-Bing Wang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Xin Zhang
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Li-Jun Gao
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui-Juan Xu
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| | - Yan-Jun Bi
- Hebei Key Laboratory of Man-machine Environmental Thermal Control Technology and Equipment, Filtration Performance and Environmental Health of Protective Materials, Xingtai 054000, China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China
| |
Collapse
|
5
|
Iwuozor KO, Emenike EC, Stephen AA, Kevin OS, Adeleke J, Adeniyi AG. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. LOW-CARBON MATERIALS AND GREEN CONSTRUCTION 2023; 1:12. [PMCID: PMC10069943 DOI: 10.1007/s44242-023-00010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aided greatly in its management. However, the increased production and usage of these PPEs put a strain on the environment, especially in developing and underdeveloped countries. This has led various researchers to study low-cost and effective technologies for the recycling of these materials. One such material is disposable facemasks. However, previous studies have only been able to engage electrically powered reactors for their thermochemical conversion, which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In this study, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almond leaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modified for biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46% biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtained was characterized to determine its properties. FTIR analysis showed that the biochar contained functional groups such as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarily made of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion of the facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area and pore characteristics.
Collapse
Affiliation(s)
- Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Agbana Abiodun Stephen
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | | | - Joy Adeleke
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Chemical Engineering Department, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
6
|
Bahrami F, Batt T, Schudel S, Annaheim S, He W, Wang J, Rossi RM, Defraeye T. How long and effective does a mask protect you from an infected person who emits virus-laden particles: By implementing one-dimensional physics-based modeling. Front Public Health 2022; 10:991455. [PMID: 36311564 PMCID: PMC9614280 DOI: 10.3389/fpubh.2022.991455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023] Open
Abstract
SARS-CoV-2 spreads via droplets, aerosols, and smear infection. From the beginning of the COVID-19 pandemic, using a facemask in different locations was recommended to slow down the spread of the virus. To evaluate facemasks' performance, masks' filtration efficiency is tested for a range of particle sizes. Although such tests quantify the blockage of the mask for a range of particle sizes, the test does not quantify the cumulative amount of virus-laden particles inhaled or exhaled by its wearer. In this study, we quantify the accumulated viruses that the healthy person inhales as a function of time, activity level, type of mask, and room condition using a physics-based model. We considered different types of masks, such as surgical masks and filtering facepieces (FFPs), and different characteristics of public places such as office rooms, buses, trains, and airplanes. To do such quantification, we implemented a physics-based model of the mask. Our results confirm the importance of both people wearing a mask compared to when only one wears the mask. The protection time for light activity in an office room decreases from 7.8 to 1.4 h with surgical mask IIR. The protection time is further reduced by 85 and 99% if the infected person starts to cough or increases the activity level, respectively. Results show the leakage of the mask can considerably affect the performance of the mask. For the surgical mask, the apparent filtration efficiency reduces by 75% with such a leakage, which cannot provide sufficient protection despite the high filtration efficiency of the mask. The facemask model presented provides key input in order to evaluate the protection of masks for different conditions in public places. The physics-based model of the facemask is provided as an online application.
Collapse
Affiliation(s)
- Flora Bahrami
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Till Batt
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Seraina Schudel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Simon Annaheim
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Weidong He
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zürich, Switzerland,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Thijs Defraeye
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland,*Correspondence: Thijs Defraeye
| |
Collapse
|
7
|
Tang SGH, Hadi MHH, Arsad SR, Ker PJ, Ramanathan S, Afandi NAM, Afzal MM, Yaw MW, Krishnan PS, Chen CP, Tiong SK. Prerequisite for COVID-19 Prediction: A Review on Factors Affecting the Infection Rate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12997. [PMID: 36293576 PMCID: PMC9602751 DOI: 10.3390/ijerph192012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Since the year 2020, coronavirus disease 2019 (COVID-19) has emerged as the dominant topic of discussion in the public and research domains. Intensive research has been carried out on several aspects of COVID-19, including vaccines, its transmission mechanism, detection of COVID-19 infection, and its infection rate and factors. The awareness of the public related to the COVID-19 infection factors enables the public to adhere to the standard operating procedures, while a full elucidation on the correlation of different factors to the infection rate facilitates effective measures to minimize the risk of COVID-19 infection by policy makers and enforcers. Hence, this paper aims to provide a comprehensive and analytical review of different factors affecting the COVID-19 infection rate. Furthermore, this review analyses factors which directly and indirectly affect the COVID-19 infection risk, such as physical distance, ventilation, face masks, meteorological factor, socioeconomic factor, vaccination, host factor, SARS-CoV-2 variants, and the availability of COVID-19 testing. Critical analysis was performed for the different factors by providing quantitative and qualitative studies. Lastly, the challenges of correlating each infection risk factor to the predicted risk of COVID-19 infection are discussed, and recommendations for further research works and interventions are outlined.
Collapse
Affiliation(s)
- Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Muhamad Haziq Hasnul Hadi
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Siti Rosilah Arsad
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Santhi Ramanathan
- Faculty of Business, Multimedia University, Jalan Ayer Keroh Lama, Malacca 75450, Malaysia
| | - Nayli Aliah Mohd Afandi
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Madihah Mohd Afzal
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Mei Wyin Yaw
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Prajindra Sankar Krishnan
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Chai Phing Chen
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Department of Electrical & Electronics, Universiti Tenaga Nasional, Kajang 43000, Malaysia
| |
Collapse
|
8
|
Liu F, Qian H. Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119167. [PMID: 35307493 PMCID: PMC8926848 DOI: 10.1016/j.envpol.2022.119167] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 05/09/2023]
Abstract
In the context of global spread of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2), there is a controversial issue on whether the use of facemasks is promising to control or mitigate the COVID-19 transmission. This study modeled the SARS-CoV-2 transmission process and analyzed the ability of surgical mask and N95 in reducing the infection risk with Sobol's analysis. Two documented outbreaks of COVID-19 with no involvers wearing face masks were reviewed in a restaurant in Guangzhou (China) and a choir rehearsal in Mount Vernon (USA), suggesting that the proposed model can be well validated when airborne transmission is assumed to dominate the virus transmission indoors. Subsequently, the uncertainty analysis of the protection efficiency of N95 and surgical mask were conducted with Monte Carlo simulations, with three main findings: (1) the uncertainty in infection risk is primarily apportioned by respiratory activities, virus dynamics, environment factors and individual exposures; (2) wearing masks can effectively reduce the SARS-CoV-2 infection risk to an acceptable level (< 10-3) by at least two orders of magnitude; (3) faceseal leakage can reduce protection efficiency by approximately 4% when the infector is speaking or coughing, and by approximately 28% when the infector is sneezing. This work indicates the effectiveness of non-pharmaceutical interventions during the pandemic, and implies the importance of the synergistic studies of medicine, environment, social policies and strategies, etc., on reducing hazards and risks of the pandemic.
Collapse
Affiliation(s)
- Fan Liu
- School of Energy and Environment, Southeast University, Nanjing, China; School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China; Engineering Research Center for Building Energy Environments & Equipments, Ministry of Education, China.
| |
Collapse
|