1
|
Zhao J, Qi B, Zhang P, Jia Y, Guo X, Dong W, Yuan Y. Research progress on the generation of NDMA by typical PPCPs in disinfection treatment of water environment in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172498. [PMID: 38657805 DOI: 10.1016/j.scitotenv.2024.172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.
Collapse
Affiliation(s)
- Jingrao Zhao
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Beimeng Qi
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China.
| | - Peng Zhang
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Yuqian Jia
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Xiaoyuan Guo
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Wenjie Dong
- Zhejiang Scientific Research Institute of Transport, 310000 Hangzhou Province, China
| | - Yixing Yuan
- School of Environment, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
2
|
Jiang S, Shi B, Zhu D, Cheng X, Zhou Z, Xie J, Chen Z, Sun L, Zhang Y, Xie Y, Jiang L. Cross-contamination and ecological risk assessment of antibiotics between rivers and surrounding open aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123404. [PMID: 38244901 DOI: 10.1016/j.envpol.2024.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Antibiotics are causing widespread concern as one of the emerging contaminants. There is the abuse of antibiotics in high-density open aquaculture, and the tailwater is often discharged into surrounding rivers. At the same time, the water replenishment of open aquaculture ponds from nearby rivers containing antibiotic contamination from different sources may result in cross-contamination. However, it is still unclear which pollution intensity is greater in rivers or in open aquaculture. So in this paper, the levels of 20 antibiotics (i.e., Fluoroquinolones (FQs), Sulfonamides (SAs), Tetracyclines (TCs), Macrolides (MLs) and Lincosamides (LCs)) in rivers and high-density open aquaculture ponds were investigated in the Baini River basin in the suburbs of Guangzhou, China. The results showed that norfloxacin (NFX) was the predominant antibiotic in river and aquaculture water, with concentrations ranging from 6.12 to 156.04 ng/L and from 7.47 to 82.62 ng/L in both aquatic systems, respectively. As for the pollution intensity of antibiotics, the annual pollution contribution (28.64 kg/a) of the river water supply to open aquaculture is higher than that (10.81 kg/a) of open aquaculture to the river, which means river pollution has a greater impact on aquaculture ponds. The risk quotient (RQ) showed that the ecological risk of lincomycin (LIN), erythromycin (ERY), sulfamethoxazole (SMX), norfloxacin (NFX), ciprofloxacin (CFX) and chlortetracycline (CTC) in rivers and aquaculture environments had high ecological risks from 1.21 to 1.81. Water interactions with contaminated rivers will result in a corresponding increase in the ecological risk of antibiotics in the aquaculture environment. Overall, according to the results, the risk of polluted rivers to open aquaculture cannot be ignored, and it is recommended that open aquaculture should use these water sources with caution, and that the water quality evaluation of aquaculture water should be increased with monitoring indicators for emerging contaminants such as antibiotics.
Collapse
Affiliation(s)
- Shenqiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Baoshan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510640, China.
| | - Zhihong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zehai Chen
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Lubin Sun
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yuda Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yuzhao Xie
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Lexin Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
3
|
Xu N, Shen Y, Jiang L, Jiang B, Li Y, Yuan Q, Zhang Y. Occurrence and risk levels of antibiotic pollution in the coastal waters of eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27500-5. [PMID: 37162672 DOI: 10.1007/s11356-023-27500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
In order to preliminarily explore the distribution of antibiotic pollution in the coastal waters of eastern China, the concentrations of 13 antibiotics in 5 representative coastal rivers in Jiangsu and 21 sampling sites in the coastal waters of Jiangsu were analyzed. The total antibiotic concentrations in the 5 rivers ranged from 33.14 to 417.78 ng L-1, and the total antibiotic concentrations in the 21 sampling sites ranged from 0.90 to 86.33 ng L-1. Macrolides exhibited the highest total concentration and the maximum detection frequency in both coastal rivers and the coastal waters. The concentrations of antibiotics in a sampling site decreased as the distance of the sampling site from the coastline increased, indicating that river inputs are important sources of antibiotic pollution in the coastal waters of Jiangsu. The detection frequencies of roxithromycin, lincomycin, azithromycin, and sulfamethoxazole in the rivers and sampling sites were above 70%. Correlation analysis showed that the concentrations of antibiotics were positively correlated with the levels of chemical oxygen demand, total phosphorus, and total nitrogen. Risk assessments revealed that roxithromycin and ofloxacin posed medium ecological and resistance risks, respectively, to the most sensitive aquatic organisms in the coastal waters of Jiangsu. The results of this study highlight the significance of monitoring and controlling the concentrations of antibiotic contaminants in the coastal waters of Jiangsu.
Collapse
Affiliation(s)
- Ning Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yi Shen
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lei Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Bin Jiang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ying Li
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Qingbin Yuan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Yunhai Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|