1
|
Maradiaga Rivas JE, Chen LJ, Lin SY, Hussain S. A Study on the Dilational Modulus Measurement of Polyacrylic Acid Films at Air-Water Interface by Pendant Bubble Tensiometry. Polymers (Basel) 2024; 16:1359. [PMID: 38794550 PMCID: PMC11125069 DOI: 10.3390/polym16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The dilational modulus (E) of polymer films has been commonly measured using the oscillating ring/bubble/drop methods with an external force, and often without specifying the state of the adsorbed film. This study explores an approach where E was determined from the relaxations of surface tension (ST) and surface area (SA) of natural perturbations, in which ST and SA were monitored using a pendant bubble tensiometer. The E of the adsorbed film of PAA (polyacrylic acid) was evaluated for aqueous solutions at CPAA = 5 × 10-4 g/cm3, [MW = 5, 25, and 250 (kDa)]. The E (=dγ/dlnA) was estimated from the surface dilational rate (dlnA/dt) and the rate of ST change (dγ/dt) of the bubble surface from the natural perturbation caused by minute variations in ambient temperature. The data revealed that (i) a considerable time is required to reach the equilibrium-ST (γeq) and to attain the saturated dilational modulus (Esat) of the adsorbed PAA film, (ii) both γeq and Esat of PAA solutions increase with MW of PAA, (iii) a lower MW solution requires a longer time to reach its γeq and Esat, and (iv) this approach is workable for evaluating the E of adsorbed polymer films.
Collapse
Affiliation(s)
- Johann Eduardo Maradiaga Rivas
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei City 106, Taiwan;
| | - Shi-Yow Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| | - Siam Hussain
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| |
Collapse
|
2
|
Kaboli A, Jafari A, Azarhava H, Mousavi SM. Performance evaluation of produced biopolymers by native strains on enhanced oil recovery. J Appl Polym Sci 2022. [DOI: 10.1002/app.52800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Afrooz Kaboli
- Petroleum Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | - Arezou Jafari
- Petroleum Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | - Hadi Azarhava
- Petroleum Engineering Department, Chemical Engineering Faculty Tarbiat Modares University Tehran Iran
| | | |
Collapse
|
3
|
Shobana N, Prakash P, Samrot AV, Jane Cypriyana PJ, Kajal P, Sathiyasree M, Saigeetha S, Stalin Dhas T, Alex Anand D, Sabesan GS, Muthuvenkatachalam BS, Mohanty BK, Visvanathan S. Purification and Characterization of Gum-Derived Polysaccharides of Moringa oleifera and Azadirachta indica and Their Applications as Plant Stimulants and Bio-Pesticidal Agents. Molecules 2022; 27:3720. [PMID: 35744846 PMCID: PMC9230390 DOI: 10.3390/molecules27123720] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant gums are bio-organic substances that are derived from the barks of trees. They are biodegradable and non-adverse complex polysaccharides that have been gaining usage in recent years due to a number of advantages they contribute to various applications. In this study, gum was collected from Moringa oleifera and Azadirachta indica trees, then dried and powdered. Characterizations of gum polysaccharides were performed using TLC, GC-MS, NMR, etc., and sugar molecules such as glucose and xylose were found to be present. Effects of the gums on Abelmoschus esculentus growth were observed through root growth, shoot growth, and biomass content. The exposure of the seeds to the plant gums led to bio stimulation in the growth of the plants. Poor quality soil was exposed to the gum polysaccharide, where the polysaccharide was found to improve soil quality, which was observed through soil analysis and SEM analysis of soil porosity and structure. Furthermore, the plant gums were also found to have bio-pesticidal activity against mealybugs, which showed certain interstitial damage evident through histopathological analysis.
Collapse
Affiliation(s)
- Nagarajan Shobana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Pandurangan Prakash
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
| | - P. J. Jane Cypriyana
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Purohit Kajal
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Mahendran Sathiyasree
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Subramanian Saigeetha
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - T. Stalin Dhas
- Centre for Ocean Research, MoES—Earth Science & Technology Cell, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - D. Alex Anand
- School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Sholinganallur, Rajiv Gandhi Salai, Chennai 600119, India; (N.S.); (P.J.J.C.); (P.K.); (M.S.); (D.A.A.)
| | - Gokul Shankar Sabesan
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | | | - Basanta Kumar Mohanty
- Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia; (G.S.S.); (B.K.M.)
| | - Sridevi Visvanathan
- Faculty of Medicine, AIMST University, Batu 3 1/2, Jalan, Bukit Air Nasi, Bedong 08100, Malaysia; (B.S.M.); (S.V.)
| |
Collapse
|
4
|
Toutouni R, Kubelka J, Piri M. Liquid–Vapor Interfacial Tension in Alkane Mixtures: Improving Predictive Capabilities of Molecular Dynamics Simulations. J Phys Chem B 2022; 126:1136-1146. [DOI: 10.1021/acs.jpcb.1c09122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Reihaneh Toutouni
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
5
|
The Migration and Deposition Behaviors of Montmorillonite and Kaolinite Particles in a Two-Dimensional Micromodel. MATERIALS 2022; 15:ma15030855. [PMID: 35160803 PMCID: PMC8838163 DOI: 10.3390/ma15030855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
The pick-up, migration, deposition, and clogging behaviors of fine particles are ubiquitous in many engineering applications, including contaminant remediation. Deposition and clogging are detrimental to the efficiency of environmental remediation, and their mechanisms are yet to be elucidated. Two-dimensional microfluidic models were developed to simulate the pore structure of porous media with unified particle sizes in this study. Kaolin and bentonite suspensions were introduced to microfluidic chips to observe their particle deposition and clogging behaviors. Interactions between interparticle forces and particle velocity profiles were investigated via computational fluid dynamics and discrete element method simulations. The results showed that (1) only the velocity vector toward the micropillars and drag forces in the reverse direction were prone to deposition; (2) due to the negligible weight of particles, the Stokes number implied that inertia was not the controlling factor causing deposition; and (3) the salinity of the carrying fluid increased the bentonite deposition because of the shrinkage of the diffused electrical double layer and an increase in aggregation force, whereas it had little effect on kaolin deposition.
Collapse
|
6
|
Berninger T, Dietz N, González López Ó. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. Microb Biotechnol 2021; 14:1881-1896. [PMID: 34196103 PMCID: PMC8449660 DOI: 10.1111/1751-7915.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022] Open
Abstract
Water-soluble polymers (WSPs) are a versatile group of chemicals used across industries for different purposes such as thickening, stabilizing, adhesion and gelation. Synthetic polymers have tailored characteristics and are chemically homogeneous, whereas plant-derived biopolymers vary more widely in their specifications and are chemically heterogeneous. Between both sources, microbial polysaccharides are an advantageous compromise. They combine naturalness with defined material properties, precisely controlled by optimizing strain selection, fermentation operational parameters and downstream processes. The relevance of such bio-based and biodegradable materials is rising due to increasing environmental awareness of consumers and a tightening regulatory framework, causing both solid and water-soluble synthetic polymers, also termed 'microplastics', to have come under scrutiny. Xanthan gum is the most important microbial polysaccharide in terms of production volume and diversity of applications, and available as different grades with specific properties. In this review, we will focus on the applicability of xanthan gum in agriculture (drift control, encapsulation and soil improvement), considering its potential to replace traditionally used synthetic WSPs. As a spray adjuvant, xanthan gum prevents the formation of driftable fine droplets and shows particular resistance to mechanical shear. Xanthan gum as a component in encapsulated formulations modifies release properties or provides additional protection to encapsulated agents. In geotechnical engineering, soil amended with xanthan gum has proven to increase water retention, reduce water evaporation, percolation and soil erosion - topics of high relevance in the agriculture of the 21st century. Finally, hands-on formulation tips are provided to facilitate exploiting the full potential of xanthan gum in diverse agricultural applications and thus providing sustainable solutions.
Collapse
Affiliation(s)
- Teresa Berninger
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Natalie Dietz
- Jungbunzlauer Ladenburg GmbHDr.‐Albert‐Reimann‐Str. 18Ladenburg68526Germany
| | - Óscar González López
- Department of Agriculture and FoodUniversidad de la RiojaC/Madre de Dios 53Logroño26006Spain
| |
Collapse
|
7
|
Toutouni R, Kubelka J, Piri M. Molecular Dynamics Simulations of the Vapor-Liquid Equilibria in CO 2/ n-Pentane, Propane/ n-Pentane, and Propane/ n-Hexane Binary Mixtures. J Phys Chem B 2021; 125:6658-6669. [PMID: 34125546 DOI: 10.1021/acs.jpcb.1c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations were used to study vapor-liquid equilibrium interfacial properties of n-alkane and n-alkane/CO2 mixtures over a wide range of pressure and temperature conditions. The simulation methodology, based on CHARMM molecular mechanics force field with long-range Lennard-Jones potentials, was first validated against experimental interfacial tension (IFT) data for two pure n-alkanes (n-pentane and n-heptane). Subsequently, liquid-vapor equilibria of CO2/n-pentane, propane/n-pentane, and propane/n-hexane mixtures were investigated at temperatures from 296 to 403 K and pressures from 0.2 to 6 MPa. The IFT, liquid and vapor phase densities, and molecular compositions of the liquid and vapor phases and of the interface were analyzed. The calculated mixture IFTs were in excellent agreement with experiments. Likewise, calculated phase densities closely matched values obtained from the equation of state (EOS) fitted to the experimental data. Examination of the density profiles, particularly in the liquid-vapor transition regions, provided a molecular-level rationalization for the observed trends in the IFT as a function of both molecular composition and temperature. Finally, two variants of the empirical parachor model commonly used for predicting the IFT, the Weinaug-Katz and Hugill-Van Welsenes equations, were tested for their accuracy in reproducing the MD simulation results. The IFT prediction accuracies of both equations were nearly identical, implying that the simpler Weinaug-Katz model is sufficient to describe the IFT of the studied systems.
Collapse
Affiliation(s)
- Reihaneh Toutouni
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jan Kubelka
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
8
|
Ahn S, Ryou JE, Ahn K, Lee C, Lee JD, Jung J. Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test. MATERIALS 2021; 14:ma14112743. [PMID: 34067408 PMCID: PMC8196949 DOI: 10.3390/ma14112743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.
Collapse
Affiliation(s)
- Seongnoh Ahn
- School of Civil Engineering, Chungbuk National University, Cheongju 28644, Korea; (S.A.); (J.-E.R.); (K.A.)
| | - Jae-Eun Ryou
- School of Civil Engineering, Chungbuk National University, Cheongju 28644, Korea; (S.A.); (J.-E.R.); (K.A.)
| | - Kwangkuk Ahn
- School of Civil Engineering, Chungbuk National University, Cheongju 28644, Korea; (S.A.); (J.-E.R.); (K.A.)
| | - Changho Lee
- Department of Civil Engineering, Chonnam National University, Gwangju 61186, Korea;
| | - Jun-Dae Lee
- Department of Civil Engineering, Semyung University, Jecheon 27136, Korea;
| | - Jongwon Jung
- School of Civil Engineering, Chungbuk National University, Cheongju 28644, Korea; (S.A.); (J.-E.R.); (K.A.)
- Correspondence:
| |
Collapse
|
9
|
Ye J, Chen X, Chen C, Bate B. Emerging sustainable technologies for remediation of soils and groundwater in a municipal solid waste landfill site -- A review. CHEMOSPHERE 2019; 227:681-702. [PMID: 31022669 DOI: 10.1016/j.chemosphere.2019.04.053] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Remediation of soils and groundwater in a municipal solid wastes (MSW) landfill site emerges as a global challenge to the living environment on earth with significant market potential. Unlike contaminants in an industry or agricultural site, contaminants from MSW landfills are diverse, primarily consisting of chemical oxygen demand (COD), inorganic matter (ammonia-nitrogen, nitrate-nitrogen, total phosphorus) and heavy metals. This renders new challenges to remediation contaminants of different characters altogether. A status quo of existing technologies, including permeable reactive barriers, electrokinetic remediation, microbial remediation, and injection of either solubilizing agents or micro or nanobubbles were thoroughly reviewed, with an emphasis on removal efficiency based on existing projects at lab, pilot or field scales. A design chart tailored for the remediation of a landfill contaminated site was developed, verified by a few case studies, which supplement the chart. Future trends of technical innovation (such as multi-layer permeable reactive barriers (PRBs)) and challenges (such as flow pattern) were identified.
Collapse
Affiliation(s)
- Jianshe Ye
- Graduate Research Assistant, Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, China
| | - Xiao Chen
- Graduate Research Assistant, Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, China
| | - Chao Chen
- Graduate Research Assistant, Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, China
| | - Bate Bate
- Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Nourafkan E, Hu Z, Wen D. Nanoparticle-enabled delivery of surfactants in porous media. J Colloid Interface Sci 2018; 519:44-57. [DOI: 10.1016/j.jcis.2018.02.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/12/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
|
11
|
Characterization of Polyethylene Oxide and Sodium Alginate for Oil Contaminated-Sand Remediation. SUSTAINABILITY 2017. [DOI: 10.3390/su9010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|