1
|
Spagnuolo D, Bressi V, Chiofalo MT, Morabito M, Espro C, Genovese G, Iannazzo D, Trifilò P. Using the Aqueous Phase Produced from Hydrothermal Carbonization Process of Brown Seaweed to Improve the Growth of Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2023; 12:2745. [PMID: 37514359 PMCID: PMC10383230 DOI: 10.3390/plants12142745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Seaweeds are considered a biomass for third-generation biofuel, and hydrothermal carbonization (HTC) is a valuable process for efficiently disposing of the excess of macroalgae biomass for conversion into multiple value-added products. However, the HTC process produces a liquid phase to be disposed of. The present study aims to investigate the effects of seed-priming treatment with three HTC-discarded liquid phases (namely AHL180, AHL240, and AHL300), obtained from different experimental procedures, on seed germination and plant growth and productivity of Phaseolus vulgaris L. To disentangle the osmotic effects from the use of AHL, isotonic solutions of polyethylene glycol (PEG) 6000 have also been tested. Seed germination was not affected by AHL seed-priming treatment. In contrast, PEG-treated samples showed significantly lower seed germination success. AHL-treated samples showed changes in plant biomass: higher shoot biomass was recorded especially in AHL180 samples. Conversely, AHL240 and AHL300 samples showed higher root biomass. The higher plant biomass values recorded in AHL-treated samples were the consequence of higher values of photosynthesis rate and water use efficiency, which, in turn, were related to higher stomatal density. Recorded data strongly support the hypothesis of the AHL solution reuse in agriculture in the framework of resource management and circular green economy.
Collapse
Affiliation(s)
- Damiano Spagnuolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Viviana Bressi
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Maria Teresa Chiofalo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marina Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Claudia Espro
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Giuseppa Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada di Dio, Vill. S. Agata, 98166 Messina, Italy
| | - Patrizia Trifilò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Maiorano G, Ramires FA, Durante M, Palamà IE, Blando F, De Rinaldis G, Perbellini E, Patruno V, Gadaleta Caldarola C, Vitucci S, Mita G, Bleve G. The Controlled Semi-Solid Fermentation of Seaweeds as a Strategy for Their Stabilization and New Food Applications. Foods 2022; 11:2811. [PMID: 36140940 PMCID: PMC9497830 DOI: 10.3390/foods11182811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
For centuries, macroalgae, or seaweeds, have been a significant part of East Asian diets. In Europe, seaweeds are not considered traditional foods, even though they are increasingly popular in Western diets in human food applications. In this study, a biological processing method based on semi-solid fermentation was optimized for the treatment of the seaweed Gracilaria gracilis. For the first time, selected lactic acid bacteria and non-conventional coagulase-negative staphylococci were used as starter preparations for driving a bio-processing and bio-stabilization of raw macroalga material to obtain new seaweed-based food prototypes for human consumption. Definite food safety and process hygiene criteria were identified and successfully applied. The obtained fermented products did not show any presence of pathogenic or spoilage microorganisms, thereby indicating safety and good shelf life. Lactobacillus acidophilus-treated seaweeds revealed higher α-amylase, protease, lipase, endo-cellulase, and endo-xylanase activity than in the untreated sample. This fermented sample showed a balanced n-6/n-3 fatty acid ratio. SBM-11 (Lactobacillus sakei, Staphylococcus carnosus and Staphylococcus xylosus) and PROMIX 1 (Staphylococcus xylosus) treated samples showed fatty acid compositions that were considered of good nutritional quality and contained relevant amounts of isoprenoids (vitamin E and A). All the starters improved the nutritional value of the seaweeds by significantly reducing the insoluble indigestible fractions. Preliminary data were obtained on the cytocompatibility of G. gracilis fermented products by in vitro tests. This approach served as a valid strategy for the easy bio-stabilization of this valuable but perishable food resource and could boost its employment for newly designed seaweed-based food products.
Collapse
Affiliation(s)
- Gabriele Maiorano
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Francesca Anna Ramires
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Miriana Durante
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Ilaria Elena Palamà
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Federica Blando
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | | | - Valeria Patruno
- Agenzia Regionale per la Tecnologia e l’Innovazione (ARTI)—Regione Puglia, 70124 Bari, Italy
| | | | - Santa Vitucci
- Struttura Speciale Cooperazione Territoriale, Regione Puglia, 70100 Bari, Italy
| | - Giovanni Mita
- Istituto di Nanotecnologie, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Gianluca Bleve
- Unità Operativa di Lecce, Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| |
Collapse
|
3
|
Conventional vs. Innovative Protocols for the Extraction of Polysaccharides from Macroalgae. SUSTAINABILITY 2022. [DOI: 10.3390/su14105750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Macroalgae are one of the most environmentally friendly resources, and their industrial by-products should also be sustainable. Algal polysaccharides represent valuable products, and the definition of new eco-sustainable extraction processes, ensuring a safe and high-quality product, is a new goal in the context of reducing the carbon footprint. The aim of the present work was to determine the influence of the extraction methodology on the properties and structure of the polysaccharides, comparing conventional and innovative microwave-assisted methods. We focused on extraction times, yield, chemical composition and, finally, biological activities of raw polymers from three macroalgal species of Chlorophyta, Rhodophyta and Phaeophyceae. The main objective was to design a sustainable process in terms of energy and time savings, with the aim of developing subsequent application at the industrial level. Extraction efficacy was likely dependent on the physico-chemical polysaccharide properties, while the use of the microwave did not affect their chemical structure. Obtained results indicate that the innovative method could be used as an alternative to the conventional one to achieve emulsifiers and bacterial antiadhesives for several applications. Natural populations of invasive algae were used rather than cultivated species in order to propose the valorization of unwanted biomasses, which are commonly treated as waste, converting them into a prized resource.
Collapse
|
4
|
Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. SUSTAINABILITY 2022. [DOI: 10.3390/su14095634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Seaweeds are attracting increasing attention as an alternative healthy food and renewable drugs source and as agents of climate change mitigation that provide essential ecosystem services. In this context, seaweeds represent marine resources capable of supporting and pursuing the objectives of the Sustainable Blue Economy and the Bio-Based Circular Economy. In this review, we analyze the state of seaweed bio-based products and research on the Mediterranean Sea from the last 20 years. Results of this analysis show a large number of investigations focusing on antimicrobial, antioxidant and anti-inflammatory activities compared to on biofuels and bioplastics. Attempts at seaweed farming, although generally very limited, are present in Israel and some North African countries. Lastly, we focus on the Italian situation—including research, companies and legislation on seaweed production—and we discuss gaps, perspectives and challenges for the potential development of a sustainable seaweed industry according to the Sustainable Blue Economy.
Collapse
|
5
|
Zammuto V, Rizzo MG, Spanò A, Spagnuolo D, Di Martino A, Morabito M, Manghisi A, Genovese G, Guglielmino S, Calabrese G, Capparucci F, Gervasi C, Nicolò MS, Gugliandolo C. Effects of crude polysaccharides from marine macroalgae on the adhesion and biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). SUSTAINABILITY 2022. [DOI: 10.3390/su14073914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of seaweed as plant biostimulants is a solution for sustainable agriculture. The present study aims to quantify and compare the presence of plant growth regulators (PGRs) in four genetically labeled macroalgae growing in the Ionian Sea. Species were selected because they produce abundant biomass, disturbing ecological equilibrium and anthropic activities. We measured the content of gibberellic acid (GA3), kinetin (KN), indoleacetic acid (IAA), abscisic acid (ABA) and indole butyric acid (IBA). The method applied was modified from the literature to obtain simultaneously different PGRs from seaweed biomass in a shorter period of time. Among results, it is notable that Hypnea corona Huisman et Petrocelli (Rhodophyta) showed higher GA3 concentration, while in Spyridia filamentosa (Wulfen) Harvey (Rhodophyta), higher KN, IBA, IAA and ABA contents were recorded. The latter species displayed an interesting profile of PGRs, with an IAA value comparable with that reported in Ascophyllum nodosum (Linnaeus) Le Jolis (Ochrophyta), which is currently used as a source of plant biostimulants in agriculture. Macroalgae thrive abundantly in nutrient-rich environments, such as anthropized coastal areas affecting human economic activities. Consequently, environmental agencies are forced to dredge algal thalli and discard them as waste. Any use of unwanted biomass as an economic product is highly desirable in the perspective of ecosustainable development.
Collapse
|
7
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
8
|
Antileishmanial effects of Sargassum vulgare products and prediction of trypanothione reductase inhibition by fucosterol. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: To investigate the antileishmanial potency of Sargassum vulgare C. Agardh-derived products and the in silico inhibition of trypanothione reductase by fucosterol. Materials & methods: Sargassum vulgare crude extract and its derived fractions, subfractions and fucosterol were screened against Leishmania major and Leishmania donovani using the MTS and trypanothione reductase colorimetric assays. Macrophages viability was evaluated using the resazurin assay. The inhibition of trypanothione reductase by fucosterol was predicted in silico. Results: The crude extract, fractions 2, 4 and 7, subfractions 8.2 and 8.3 and fucosterol-exhibited antileishmanial activity on promastigote (IC50 = 18.99–156.02 μg/ml), while fraction 1, subfraction 8.2 and fucosterol were active on L. major and L. donovani amastigote (IC50 = 18.47–65.34 μg/ml) with low cytotoxicity. Interestingly, fucosterol showed the best activity against both parasites (IC50 = 18.47–58.21 μg/ml). Strong binding affinities were recorded between fucosterol and Leishmania spp. trypanothione reductases. Conclusion: Fucosterol, which was abundant in S. vulgare, might be responsible for the antileishmanial activity.
Collapse
|
9
|
Kumar A, Buia MC, Palumbo A, Mohany M, Wadaan MAM, Hozzein WN, Beemster GTS, AbdElgawad H. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO 2 vents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113765. [PMID: 31884208 DOI: 10.1016/j.envpol.2019.113765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
We utilized volcanic CO2 vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO2 on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Collapse
Affiliation(s)
- Amit Kumar
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, India; Sathyabama Marine Research Station, 123 Sallimalai Street, Rameswaram, India.
| | - Maria Cristina Buia
- Center of Villa Dohrn Ischia - Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A M Wadaan
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Integrated Molecular Plant Physiology Research Group (IMPRES) Department of Biology, Groenenborgerlaan 171, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Sfriso A, Mistri M, Munari C, Buosi A, Sfriso AA. Management and Exploitation of Macroalgal Biomass as a Tool for the Recovery of Transitional Water Systems. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Machín L, Tamargo B, Piñón A, Atíes RC, Scull R, Setzer WN, Monzote L. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential Oils Formulated in Nanocochleates against Leishmania amazonensis. Molecules 2019; 24:E4222. [PMID: 31757083 PMCID: PMC6930544 DOI: 10.3390/molecules24234222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
Leishmaniasis is a group of neglected tropical diseases caused by protozoan parasites of the Leishmania genus. The absence of effective vaccines and the limitations of current treatments make the search for effective therapies a real need. Different plant-derived essential oils (EOs) have shown antileishmanial effects, in particular from Bixa orellana L. (EO-Bo) and Dysphania ambrosioides (L.) Mosyakin & Clemants (EO-Da). In the present study, the EO-Bo and EO-Da, formulated in nanocochleates (EO-Bo-NC and EO-Da-NC, respectively), were evaluated in vitro and in vivo against L. amazonensis. The EO-Bo-NC and EO-Da-NC did not increase the in vitro inhibitory activity of the EOs, although the EO-Bo-NC showed reduced cytotoxic effects. In the animal model, both formulations (30 mg/kg/intralesional route/every 4 days/4 times) showed no deaths or weight loss greater than 10%. In the animal (mouse) model, EO-Bo-NC contributed to the control of infection (p < 0.05) in comparison with EO-Bo treatment, while the mice treated with EO-Da-NC exhibited larger lesions (p < 0.05) compared to those treated with EO-Da. The enhanced in vivo activity observed for EO-Bo-NC suggests that lipid-based nanoformulations like nanocochleates should be explored for their potential in the proper delivery of drugs, and in particular, the delivery of hydrophobic materials for effective cutaneous leishmaniasis treatment.
Collapse
Affiliation(s)
- Laura Machín
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Beatriz Tamargo
- Department of Physiological Science, Latin American School of Medical Sciences, Havana 11300, Cuba;
| | - Abel Piñón
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
| | - Regla C. Atíes
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - Ramón Scull
- Department of Pharmacy, Institute of Pharmacy and Food, Havana University, Havana 17100, Cuba; (L.M.); (R.C.A.); (R.S.)
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine Pedro Kourí, Havana 17100, Cuba;
- Research Network: Natural Products against Neglected Diseases (ResNet NPND)
| |
Collapse
|
12
|
Stabili L, Acquaviva MI, Angilè F, Cavallo RA, Cecere E, Del Coco L, Fanizzi FP, Gerardi C, Narracci M, Petrocelli A. Screening of Chaetomorpha linum Lipidic Extract as A New Potential Source of Bioactive Compounds. Mar Drugs 2019; 17:md17060313. [PMID: 31142027 PMCID: PMC6627440 DOI: 10.3390/md17060313] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that marine algae represent a great source of natural compounds with several properties. The lipidic extract of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales), one of the dominant species in the Mar Piccolo of Taranto (Mediterranean, Ionian Sea), revealed an antibacterial activity against Vibrio ordalii and Vibrio vulnificus, common pathogens in aquaculture, suggesting its potential employment to control fish and shellfish diseases due to vibriosis and to reduce the public health hazards related to antibiotic use in aquaculture. This extract showed also an antioxidant activity, corresponding to 170.960 ± 16. mmol Trolox equivalent/g (oxygen radical absorbance capacity assay-ORAC) and to 30.554 ± 2.30 mmol Trolox equivalent/g (Trolox equivalent antioxidant capacity assay-TEAC). The chemical characterization of the extract, performed by 1D and 2D NMR spectroscopy, highlighted the presence of free, saturated (SAFAs), unsaturated (UFAs) and polyunsaturated (PUFAs) fatty acids. The high content of ω-6 and ω-3 PUFAs confirmed also by gas chromatography indicates the potentiality of this algal species in the production of fortified food. The antibacterial activity seems related to the presence of linolenic acid present at high density, while the antioxidant activity could be likely ascribable to molecules such as carotenoids and chlorophylls (characterized also by thin-layer chromatography), known for this property. The presence of polyhydroxybutyrate, a biopolymer with potentiality in the field of biodegradable bioplastics was also detected. The exploitation of C. linum for a future biotechnological application is also encouraged by the results from a first attempt of cultivating this species in an integrated multi-trophic aquaculture (IMTA) system.
Collapse
Affiliation(s)
- Loredana Stabili
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy.
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | | | - Federica Angilè
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | | | - Ester Cecere
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy.
| | - Laura Del Coco
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Department of Science and Biological and Environmental Technologies, University of Salento, 72100 Lecce, Italy.
| | - Carmela Gerardi
- Institute of Sciences of Food Production, U.O.S. di Lecce, Via Prov.le Lecce-Monteroni, 72100 Lecce, Italy.
| | | | | |
Collapse
|
13
|
Kowa TK, Tchokouaha LRY, Cieckiewicz E, Philips TJ, Dotse E, Wabo HK, Tchinda AT, Tane P, Frédérich M. Antileishmanial and cytotoxic activities of a new limonoid and a new phenyl alkene from the stem bark of Trichilia gilgiana (Meliaceae). Nat Prod Res 2019; 34:3182-3188. [DOI: 10.1080/14786419.2018.1553879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Theodora K. Kowa
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium
- Laboratory of Natural Products Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Lauve R. Y. Tchokouaha
- Laboratory of Pharmacology, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Ewa Cieckiewicz
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium
| | - Trudy Janice Philips
- Department of Clinical Pathology, NMIMR, CHS, University of Ghana, Legon, Accra, Ghana
| | - Eunice Dotse
- Department of Clinical Pathology, NMIMR, CHS, University of Ghana, Legon, Accra, Ghana
| | - Hippolyte K. Wabo
- Laboratory of Natural Products Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Alembert T. Tchinda
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Pierre Tane
- Laboratory of Natural Products Chemistry, Department of Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Liege, Belgium
| |
Collapse
|
14
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Botana LM, Gaspar H, Pedrosa R. Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Potential Antibacterial Activity of Marine Macroalgae against Pathogens Relevant for Aquaculture and Human Health. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.07] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar Drugs 2017; 15:md15110323. [PMID: 29109372 PMCID: PMC5706021 DOI: 10.3390/md15110323] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/20/2023] Open
Abstract
Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery.
Collapse
|
18
|
Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8:515. [PMID: 28487674 PMCID: PMC5403934 DOI: 10.3389/fmicb.2017.00515] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/13/2017] [Indexed: 12/05/2022] Open
Abstract
Cyanobacteria and algae having complex photosynthetic systems can channelize absorbed solar energy into other forms of energy for production of food and metabolites. In addition, they are promising biocatalysts and can be used in the field of "white biotechnology" for enhancing the sustainable production of food, metabolites, and green energy sources such as biodiesel. In this review, an endeavor has been made to uncover the significance of various metabolites like phenolics, phytoene/terpenoids, phytols, sterols, free fatty acids, photoprotective compounds (MAAs, scytonemin, carotenoids, polysaccharides, halogenated compounds, etc.), phytohormones, cyanotoxins, biocides (algaecides, herbicides, and insecticides) etc. Apart from this, the importance of these metabolites as antibiotics, immunosuppressant, anticancer, antiviral, anti-inflammatory agent has also been discussed. Metabolites obtained from cyanobacteria and algae have several biotechnological, industrial, pharmaceutical, and cosmetic uses which have also been discussed in this review along with the emerging technology of their harvesting for enhancing the production of compounds like bioethanol, biofuel etc. at commercial level. In later sections, we have discussed genetically modified organisms and metabolite production from them. We have also briefly discussed the concept of bioprocessing highlighting the functioning of companies engaged in metabolites production as well as their cost effectiveness and challenges that are being addressed by these companies.
Collapse
Affiliation(s)
- Rachana Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Parul Parihar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Madhulika Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Andrzej Bajguz
- Faculty of Biology and Chemistry, Institute of Biology, University of BialystokBialystok, Poland
| | - Jitendra Kumar
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Samiksha Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| | - Vijay P. Singh
- Department of Botany, Govt. Ramanuj Pratap Singhdev Post-Graduate CollegeBaikunthpur, Koriya, India
| | - Sheo M. Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of AllahabadAllahabad, India
| |
Collapse
|