1
|
Hayashi K. Chaotic nature of the electroencephalogram during shallow and deep anesthesia: From analysis of the Lyapunov exponent. Neuroscience 2024; 557:116-123. [PMID: 39142623 DOI: 10.1016/j.neuroscience.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
In conscious states, the electrodynamics of the cortex are reported to work near a critical point or phase transition of chaotic dynamics, known as the edge-of-chaos, representing a boundary between stability and chaos. Transitions away from this boundary disrupt cortical information processing and induce a loss of consciousness. The entropy of the electroencephalogram (EEG) is known to decrease as the level of anesthesia deepens. However, whether the chaotic dynamics of electroencephalographic activity shift from this boundary to the side of stability or the side of chaotic enhancement during anesthesia-induced loss of consciousness remains poorly understood. We investigated the chaotic properties of EEGs at two different depths of clinical anesthesia using the maximum Lyapunov exponent, which is mathematically regarded as a formal measure of chaotic nature, using the Rosenstein algorithm. In 14 adult patients, 12 s of electroencephalographic signals were selected during two depths of clinical anesthesia (sevoflurane concentration 2% as relatively deep anesthesia, sevoflurane concentration 0.6% as relatively shallow anesthesia). Lyapunov exponents, correlation dimensions and approximate entropy were calculated from these electroencephalographic signals. As a result, maximum Lyapunov exponent was generally positive during sevoflurane anesthesia, and both maximum Lyapunov exponents and correlation dimensions were significantly greater during deep anesthesia than during shallow anesthesia despite reductions in approximate entropy. The chaotic nature of the EEG might be increased at clinically deeper inhalational anesthesia, despite the decrease in randomness as reflected in the decreased entropy, suggesting a shift to the side of chaotic enhancement under anesthesia.
Collapse
Affiliation(s)
- Kazuko Hayashi
- Kyoto Chubu Medical Center, Department of Anesthesiology, Yagi-cho Yagi Ueno 25, Nantan City, Kyoto 629-0197, Japan; Kyoto Prefectural University of Medicine, Department of Anesthesiology, Meiji University of Integrative Medicine, Department of Clinical Medicine, Japan.
| |
Collapse
|
2
|
Mofakham S, Robertson J, Lubin N, Cleri NA, Mikell CB. An Unpredictable Brain Is a Conscious, Responsive Brain. J Cogn Neurosci 2024; 36:1643-1652. [PMID: 38579270 DOI: 10.1162/jocn_a_02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Severe traumatic brain injuries typically result in loss of consciousness or coma. In deeply comatose patients with traumatic brain injury, cortical dynamics become simple, repetitive, and predictable. We review evidence that this low-complexity, high-predictability state results from a passive cortical state, represented by a stable repetitive attractor, that hinders the flexible formation of neuronal ensembles necessary for conscious experience. Our data and those from other groups support the hypothesis that this cortical passive state is because of the loss of thalamocortical input. We identify the unpredictability and complexity of cortical dynamics captured by local field potential as a sign of recovery from this passive coma attractor. In this Perspective article, we discuss how these electrophysiological biomarkers of the recovery of consciousness could inform the design of closed-loop stimulation paradigms to treat disorders of consciousness.
Collapse
|
3
|
Toker D, Müller E, Miyamoto H, Riga MS, Lladó-Pelfort L, Yamakawa K, Artigas F, Shine JM, Hudson AE, Pouratian N, Monti MM. Criticality supports cross-frequency cortical-thalamic information transfer during conscious states. eLife 2024; 13:e86547. [PMID: 38180472 PMCID: PMC10805384 DOI: 10.7554/elife.86547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Eli Müller
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- International Research Center for Neurointelligence, University of TokyoNagoyaJapan
| | - Maurizio S Riga
- Andalusian Center for Molecular Biology and Regenerative MedicineSevilleSpain
| | - Laia Lladó-Pelfort
- Departament de Ciències Bàsiques, Universitat de Vic-Universitat Central de CatalunyaBarcelonaSpain
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Francesc Artigas
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d’Investigacions Biomèdiques de BarcelonaBarcelonaSpain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
| | - James M Shine
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Andrew E Hudson
- Department of Anesthesiology, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUnited States
- Department of Anesthesiology and Perioperative Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical CenterDallasUnited States
| | - Martin M Monti
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurosurgery, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
4
|
Toker D, Pappas I, Lendner JD, Frohlich J, Mateos DM, Muthukumaraswamy S, Carhart-Harris R, Paff M, Vespa PM, Monti MM, Sommer FT, Knight RT, D'Esposito M. Consciousness is supported by near-critical slow cortical electrodynamics. Proc Natl Acad Sci U S A 2022; 119:e2024455119. [PMID: 35145021 PMCID: PMC8851554 DOI: 10.1073/pnas.2024455119] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence suggests that during conscious states, the electrodynamics of the cortex are poised near a critical point or phase transition and that this near-critical behavior supports the vast flow of information through cortical networks during conscious states. Here, we empirically identify a mathematically specific critical point near which waking cortical oscillatory dynamics operate, which is known as the edge-of-chaos critical point, or the boundary between stability and chaos. We do so by applying the recently developed modified 0-1 chaos test to electrocorticography (ECoG) and magnetoencephalography (MEG) recordings from the cortices of humans and macaques across normal waking, generalized seizure, anesthesia, and psychedelic states. Our evidence suggests that cortical information processing is disrupted during unconscious states because of a transition of low-frequency cortical electric oscillations away from this critical point; conversely, we show that psychedelics may increase the information richness of cortical activity by tuning low-frequency cortical oscillations closer to this critical point. Finally, we analyze clinical electroencephalography (EEG) recordings from patients with disorders of consciousness (DOC) and show that assessing the proximity of slow cortical oscillatory electrodynamics to the edge-of-chaos critical point may be useful as an index of consciousness in the clinical setting.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Psychology, University of California, Los Angeles, CA 90095;
| | - Ioannis Pappas
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
- Laboratory of Neuro Imaging, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Janna D Lendner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Anesthesiology and Intensive Care, University Medical Center, 72076 Tübingen, Germany
| | - Joel Frohlich
- Department of Psychology, University of California, Los Angeles, CA 90095
| | - Diego M Mateos
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, C1425 Buenos Aires, Argentina
- Facultad de Ciencia y Tecnología, Universidad Autónoma de Entre Ríos, E3202 Paraná, Entre Ríos, Argentina
- Grupo de Análisis de Neuroimágenes, Instituo de Matemática Aplicada del Litoral, S3000 Santa Fe, Argentina
| | - Suresh Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, 1010 Auckland, New Zealand
| | - Robin Carhart-Harris
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
- Centre for Psychedelic Research, Department of Psychiatry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Michelle Paff
- Department of Neurological Surgery, University of California, Irvine, CA 92697
| | - Paul M Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, CA 90095
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Friedrich T Sommer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94704
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94704
- Department of Psychology, University of California, Berkeley, CA 94704
| |
Collapse
|
5
|
Lee A, Dai B, Wu D, Wu H, Schwartz RN, Wang KL. A thermodynamic core using voltage-controlled spin-orbit-torque magnetic tunnel junctions. NANOTECHNOLOGY 2021; 32:505405. [PMID: 33657540 DOI: 10.1088/1361-6528/abeb9b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
We present a magnetic implementation of a thermodynamic computing fabric. Magnetic devices within computing cores harness thermodynamics through its voltage-controlled thermal stability; while the evolution of network states is guided by the spin-orbit-torque effect. We theoretically derive the dynamics of the cores and show that the computing fabric can successfully compute ground states of a Boltzmann Machine. Subsequently, we demonstrate the physical realization of these devices based on a CoFeB-MgO magnetic tunnel junction structure. The results of this work pave the path towards the realization of highly efficient, high-performance thermodynamic computing hardware. Finally, this paper will also give a perspective of computing beyond thermodynamic computing.
Collapse
Affiliation(s)
- Albert Lee
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| | - Bingqian Dai
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| | - Di Wu
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| | - Hao Wu
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| | - Robert N Schwartz
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| | - Kang L Wang
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, 90095, United States of America
- Department of Physics and Astronomy, UCLA, Los Angeles, CA, 90095, United States of America
- Department of Material Science and Engineering, UCLA, Los Angeles, CA, 90095, United States of America
| |
Collapse
|