1
|
Liu J, Long L, Yang Y. Modeling of Enhanced Polar Magneto-Optic Kerr Effect by Surface Plasmons in Au Bowtie Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:253. [PMID: 36678005 PMCID: PMC9863591 DOI: 10.3390/nano13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The weak magneto-optical (MO) signal of traditional MO materials is indeed an important issue for their further practical applications. Although many strategies have been proposed to improve the MO effect, hybridization with noble metal nanostructures is a promising route in recent years due to the high localized-surface plasmon resonances (LSPR) effect. A new magneto-optical surface plasmon resonance (MOSPR) structure hybrid with Au bowtie arrays is proposed to increase the measuring range of the polar magneto-optical Kerr effect (PMOKE) and the quality factor through the LSPR effect. It is verified by a numerical simulation of the finite element method (FEM). The optimized parameters were found by modulating the shape and geometric dimensions. Owing to the significant LSPR from the Au bowties, a PMOKE amplification signal spectrum with narrow linewidth, and a high amplitude with high-sensing performance was achieved. Compared with the bare magnetic film alone, by optimizing the relevant parameters of the LSPR structure, the maximum signal increases 3255 times, and the quality factor can be greatly improved, which would provide important guidance and help for the practical application of MO devices.
Collapse
Affiliation(s)
- Jingyi Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lianchun Long
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Nanosphere Lithography-Based Fabrication of Spherical Nanostructures and Verification of Their Hexagonal Symmetries by Image Analysis. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nanosphere lithography (NSL) is a cost- and time-effective technique for the fabrication of well-ordered large-area arrays of nanostructures. This paper reviews technological challenges in NSL mask preparation, its modification, and quality control. Spin coating with various process parameters (substrate wettability, solution properties, spin coating operating parameters) are discussed to create a uniform monolayer from monodisperse polystyrene (PS) nanospheres with a diameter of 0.2–1.5 μm. Scanning electron microscopy images show that the PS nanospheres are ordered into a hexagonal close-packed monolayer. Verification of sphere ordering and symmetry is obtained using our open-source software HEXI, which can recognize and detect circles, and distinguish between hexagonal ordering and defect configurations. The created template is used to obtain a wide variety of tailor-made periodic structures by applying additional treatments, such as plasma etching (isotropic and anisotropic), deposition, evaporation, and lift-off. The prepared highly ordered nanopatterned arrays (from circular, triangular, pillar-shaped structures) are applicable in many different fields (plasmonics, photonics, sensorics, biomimetic surfaces, life science, etc.).
Collapse
|
3
|
Special Issue of Symmetry: “Recent Advances in Linear and Nonlinear Optics”. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this Special Issue, invited researchers elaborate on ‘Recent Advances in Linear and Nonlinear Optics’, demonstrating how sensitive light–matter interactions are concerning symmetry [...]
Collapse
|
4
|
Khan P, Brennan G, Li Z, Al Hassan L, Rice D, Gleeson M, Mani AA, Tofail SAM, Xu H, Liu N, Silien C. Circular Polarization Conversion in Single Plasmonic Spherical Particles. NANO LETTERS 2022; 22:1504-1510. [PMID: 35112876 PMCID: PMC8880373 DOI: 10.1021/acs.nanolett.1c03848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Temporal and spectral behaviors of plasmons determine their ability to enhance the characteristics of metamaterials tailored to a wide range of applications, including electric-field enhancement, hot-electron injection, sensing, as well as polarization and angular momentum manipulation. We report a dark-field (DF) polarimetry experiment on single particles with incident circularly polarized light in which gold nanoparticles scatter with opposite handedness at visible wavelengths. Remarkably, for silvered nanoporous silica microparticles, the handedness conversion occurs at longer visible wavelengths, only after adsorption of molecules on the silver. Finite element analysis (FEA) allows matching the circular polarization (CP) conversion to dominant quadrupolar contributions, determined by the specimen size and complex susceptibility. We hypothesize that the damping accompanying the adsorption of molecules on the nanostructured silver facilitates the CP conversion. These results offer new perspectives in molecule sensing and materials tunability for light polarization conversion and control of light spin angular momentum at submicroscopic scale.
Collapse
Affiliation(s)
- Pritam Khan
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Grace Brennan
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Zhe Li
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
- School
of Physics and Technology, Institute for Advanced Studies and Center
for Nanoscience and Nanotechnology, Wuhan
University, Wuhan, 430072, China
| | - Luluh Al Hassan
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Daragh Rice
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Matthew Gleeson
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Aladin A. Mani
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Syed A. M. Tofail
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Hongxing Xu
- School
of Physics and Technology, Institute for Advanced Studies and Center
for Nanoscience and Nanotechnology, Wuhan
University, Wuhan, 430072, China
| | - Ning Liu
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Christophe Silien
- Department
of Physics and Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
5
|
Arbi R, Hui LS, Dittrich M, Turak A. Utility of far-field effects from tip-assisted Raman spectroscopy for the detection of a monolayer of diblock copolymer reverse micelles for nanolithography. Phys Chem Chem Phys 2021; 23:11065-11074. [PMID: 33942831 DOI: 10.1039/d1cp01399h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modified set-up for Raman spectroscopy is proposed to utilize an AFM probe in a regime beyond the dependence on near field optics. Possible mechanisms for the observed enhancement have been explored through comparisons to spectra from other enhanced Raman techniques, including surface enhanced Raman, interference enhanced Raman and polarized Raman spectroscopies. The effects of polarization, focusing and interference are heightened when near field effects are diminished, giving rise to spectral enhancement. This technique allows for the characterization of a sub-20 nm monolayer of polystyrene-block-poly(2 vinyl pyridine) reverse micelles and paves the way for a promising method of non-destructive analysis of large self-assembled arrays of colloids.
Collapse
Affiliation(s)
- Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada.
| | - Lok Shu Hui
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada.
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada
| | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|