1
|
Albahri AS, Albahri OS, Zaidan AA, Alnoor A, Alsattar HA, Mohammed R, Alamoodi AH, Zaidan BB, Aickelin U, Alazab M, Garfan S, Ahmaro IYY, Ahmed MA. Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. COMPUTER STANDARDS & INTERFACES 2022; 80:103572. [PMID: 34456503 PMCID: PMC8386109 DOI: 10.1016/j.csi.2021.103572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
Collapse
Affiliation(s)
- A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Ibraheem Y Y Ahmaro
- Computer Science Department, College of Information Technology, Hebron University, Hebron, Palestine
| | - M A Ahmed
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq
| |
Collapse
|
2
|
Abstract
In many real-life problems, decision-making is reckoned as a powerful tool to manipulate the data involving imprecise and vague information. To fix the mathematical problems containing more generalized datasets, an emerging model called q-rung orthopair fuzzy soft sets offers a comprehensive framework for a number of multi-attribute decision-making (MADM) situations but this model is not capable to deal effectively with situations having bipolar soft data. In this research study, a novel hybrid model under the name of q-rung orthopair fuzzy bipolar soft set (q-ROFBSS, henceforth), an efficient bipolar soft generalization of q-rung orthopair fuzzy set model, is introduced and illustrated by an example. The proposed model is successfully tested for several significant operations like subset, complement, extended union and intersection, restricted union and intersection, the ‘AND’ operation and the ‘OR’ operation. The De Morgan’s laws are also verified for q-ROFBSSs regarding above-mentioned operations. Ultimately, two applications are investigated by using the proposed framework. In first real-life application, the selection of land for cropping the carrots and the lettuces is studied, while in second practical application, the selection of an eligible student for a scholarship is discussed. At last, a comparison of the initiated model with certain existing models, including Pythagorean and Fermatean fuzzy bipolar soft set models is provided.
Collapse
|