1
|
Dankovich LJ, Joyner JS, He W, Sesay A, Vaughn-Cooke M. CogWatch: An open-source platform to monitor physiological indicators for cognitive workload and stress. HARDWAREX 2024; 19:e00538. [PMID: 38962730 PMCID: PMC11220525 DOI: 10.1016/j.ohx.2024.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 07/05/2024]
Abstract
Cognitive workload is a measure of the mental resources a user is dedicating to a given task. Low cognitive workload produces boredom and decreased vigilance, which can lead to an increase in response time. Under high cognitive workload the information processing burden of the user increases significantly, thereby compromising the ability to effectively monitor their environment for unexpected stimuli or respond to emergencies. In cognitive workload and stress monitoring research, sensors are used to measure applicable physiological indicators to infer the state of user. For example, electrocardiography or photoplethysmography are often used to track both the rate at which the heart beats and variability between the individual heart beats. Photoplethysmography and chest straps are also used in studies to track fluctuations in breathing rate. The Galvanic Skin Response is a change in sweat rate (especially on the palms and wrists) and is typically measured by tracking how the resistance of two probes at a fixed distance on the subject's skin changes over time. Finally, fluctuations in Skin Temperature are typically tracked with thermocouples or infrared light (IR) measuring systems in these experiments. While consumer options such a smartwatches for health tracking often have the integrated ability to perform photoplethysmography, they typically perform significant processing on the data which is not transparent to the user and often have a granularity of data that is far too low to be useful for research purposes. It is possible to purchase sensor boards that can be added to Arduino systems, however, these systems generally are very large and obtrusive. Additionally, at the high end of the spectrum there are medical tools used to track these physiological signals, but they are often very expensive and require specific software to be licensed for communication. In this paper, an open-source solution to create a physiological tracker with a wristwatch form factor is presented and validated, using conventional off-the-shelf components. The proposed tool is intended to be applied as a cost-effective solution for research and educational settings.
Collapse
Affiliation(s)
- Louis J. Dankovich
- University of Maryland at College Park, James A. Clark School of Engineering, 8228 Paint Branch Dr, College Park, MD 20742, United States
| | - Janell S. Joyner
- University of Maryland at College Park, James A. Clark School of Engineering, 8228 Paint Branch Dr, College Park, MD 20742, United States
| | - William He
- University of Maryland at College Park, James A. Clark School of Engineering, 8228 Paint Branch Dr, College Park, MD 20742, United States
| | - Ahmad Sesay
- University of Maryland at College Park, James A. Clark School of Engineering, 8228 Paint Branch Dr, College Park, MD 20742, United States
| | - Monifa Vaughn-Cooke
- Virginia Tech, VT Carilion School of Medicine, 2 Riverside Circle, Roanoke, VA 24016, United States
| |
Collapse
|
2
|
Wang L, Bi T, Hao J, Zhou TH. Heart Diseases Recognition Model Based on HRV Feature Extraction over 12-Lead ECG Signals. SENSORS (BASEL, SWITZERLAND) 2024; 24:5296. [PMID: 39204993 PMCID: PMC11360006 DOI: 10.3390/s24165296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Heart Rate Variability (HRV) refers to the capability of the heart rhythm to vary at different times, typically reflecting the regulation of the heart by the autonomic nervous system. In recent years, with advancements in Electrocardiogram (ECG) signal processing technology, HRV features reflect various aspects of cardiac activity, such as variability in heart rate, cardiac health status, and responses. We extracted key features of HRV and used them to develop and evaluate an automatic recognition model for cardiac diseases. Consequently, we proposed the HRV Heart Disease Recognition (HHDR) method, employing the Spectral Magnitude Quantification (SMQ) technique for feature extraction. Firstly, the HRV signals are extracted through electrocardiogram signal processing. Then, by analyzing parts of the HRV signal within various frequency ranges, the SMQ method extracts rich features of partial information. Finally, the Random Forest (RF) classification computational method is employed to classify the extracted information, achieving efficient and accurate cardiac disease recognition. Experimental results indicate that this method surpasses current technologies in recognizing cardiac diseases, with an average accuracy rate of 95.1% for normal/diseased classification, and an average accuracy of 84.8% in classifying five different disease categories. Thus, the proposed HHDR method effectively utilizes the local information of HRV signals for efficient and accurate cardiac disease recognition, providing strong support for cardiac disease research in the medical field.
Collapse
Affiliation(s)
| | | | | | - Tie Hua Zhou
- Department of Computer Science and Technology, School of Computer Science, Northeast Electric Power University, Jilin 132013, China; (L.W.); (T.B.); (J.H.)
| |
Collapse
|
3
|
Gaur P, Temple DS, Hegarty-Craver M, Boyce MD, Holt JR, Wenger MF, Preble EA, Eckhoff RP, McCombs MS, Davis-Wilson HC, Walls HJ, Dausch DE. Continuous Monitoring of Heart Rate Variability in Free-Living Conditions Using Wearable Sensors: Exploratory Observational Study. JMIR Form Res 2024; 8:e53977. [PMID: 39110968 PMCID: PMC11339560 DOI: 10.2196/53977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/14/2024] [Accepted: 06/06/2024] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Wearable physiological monitoring devices are promising tools for remote monitoring and early detection of potential health changes of interest. The widespread adoption of such an approach across communities and over long periods of time will require an automated data platform for collecting, processing, and analyzing relevant health information. OBJECTIVE In this study, we explore prospective monitoring of individual health through an automated data collection, metrics extraction, and health anomaly analysis pipeline in free-living conditions over a continuous monitoring period of several months with a focus on viral respiratory infections, such as influenza or COVID-19. METHODS A total of 59 participants provided smartwatch data and health symptom and illness reports daily over an 8-month window. Physiological and activity data from photoplethysmography sensors, including high-resolution interbeat interval (IBI) and step counts, were uploaded directly from Garmin Fenix 6 smartwatches and processed automatically in the cloud using a stand-alone, open-source analytical engine. Health risk scores were computed based on a deviation in heart rate and heart rate variability metrics from each individual's activity-matched baseline values, and scores exceeding a predefined threshold were checked for corresponding symptoms or illness reports. Conversely, reports of viral respiratory illnesses in health survey responses were also checked for corresponding changes in health risk scores to qualitatively assess the risk score as an indicator of acute respiratory health anomalies. RESULTS The median average percentage of sensor data provided per day indicating smartwatch wear compliance was 70%, and survey responses indicating health reporting compliance was 46%. A total of 29 elevated health risk scores were detected, of which 12 (41%) had concurrent survey data and indicated a health symptom or illness. A total of 21 influenza or COVID-19 illnesses were reported by study participants; 9 (43%) of these reports had concurrent smartwatch data, of which 6 (67%) had an increase in health risk score. CONCLUSIONS We demonstrate a protocol for data collection, extraction of heart rate and heart rate variability metrics, and prospective analysis that is compatible with near real-time health assessment using wearable sensors for continuous monitoring. The modular platform for data collection and analysis allows for a choice of different wearable sensors and algorithms. Here, we demonstrate its implementation in the collection of high-fidelity IBI data from Garmin Fenix 6 smartwatches worn by individuals in free-living conditions, and the prospective, near real-time analysis of the data, culminating in the calculation of health risk scores. To our knowledge, this study demonstrates for the first time the feasibility of measuring high-resolution heart IBI and step count using smartwatches in near real time for respiratory illness detection over a long-term monitoring period in free-living conditions.
Collapse
Affiliation(s)
- Pooja Gaur
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - Dorota S Temple
- Research Triangle Institute, Research Triangle Park, NC, United States
| | | | - Matthew D Boyce
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - Jonathan R Holt
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - Michael F Wenger
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - Edward A Preble
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - Randall P Eckhoff
- Research Triangle Institute, Research Triangle Park, NC, United States
| | | | | | - Howard J Walls
- Research Triangle Institute, Research Triangle Park, NC, United States
| | - David E Dausch
- Research Triangle Institute, Research Triangle Park, NC, United States
| |
Collapse
|
4
|
Lee S, Moon J, Lee YS, Shin SC, Lee K. Wearable-Based Integrated System for In-Home Monitoring and Analysis of Nocturnal Enuresis. SENSORS (BASEL, SWITZERLAND) 2024; 24:3330. [PMID: 38894140 PMCID: PMC11174938 DOI: 10.3390/s24113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024]
Abstract
Nocturnal enuresis (NE) is involuntary bedwetting during sleep, typically appearing in young children. Despite the potential benefits of the long-term home monitoring of NE patients for research and treatment enhancement, this area remains underexplored. To address this, we propose NEcare, an in-home monitoring system that utilizes wearable devices and machine learning techniques. NEcare collects sensor data from an electrocardiogram, body impedance (BI), a three-axis accelerometer, and a three-axis gyroscope to examine bladder volume (BV), heart rate (HR), and periodic limb movements in sleep (PLMS). Additionally, it analyzes the collected NE patient data and supports NE moment estimation using heuristic rules and deep learning techniques. To demonstrate the feasibility of in-home monitoring for NE patients using our wearable system, we used our datasets from 30 in-hospital patients and 4 in-home patients. The results show that NEcare captures expected trends associated with NE occurrences, including BV increase, HR increase, and PLMS appearance. In addition, we studied the machine learning-based NE moment estimation, which could help relieve the burdens of NE patients and their families. Finally, we address the limitations and outline future research directions for the development of wearable systems for NE patients.
Collapse
Affiliation(s)
- Sangyeop Lee
- Department of Computer Science, College of Computing, Yonsei University, Seoul 03722, Republic of Korea; (S.L.); (K.L.)
| | - Junhyung Moon
- Department of Computer Science, College of Computing, Yonsei University, Seoul 03722, Republic of Korea; (S.L.); (K.L.)
| | - Yong Seung Lee
- Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea;
| | - Seung-chul Shin
- System LSI Business, Samsung Electronics Co., Hwaseong-si 18448, Republic of Korea;
| | - Kyoungwoo Lee
- Department of Computer Science, College of Computing, Yonsei University, Seoul 03722, Republic of Korea; (S.L.); (K.L.)
| |
Collapse
|
5
|
Cheng CF, Lin CJ. Building a Low-Cost Wireless Biofeedback Solution: Applying Design Science Research Methodology. SENSORS (BASEL, SWITZERLAND) 2023; 23:2920. [PMID: 36991630 PMCID: PMC10052076 DOI: 10.3390/s23062920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, affective computing has emerged as a promising approach to studying user experience, replacing subjective methods that rely on participants' self-evaluation. Affective computing uses biometrics to recognize people's emotional states as they interact with a product. However, the cost of medical-grade biofeedback systems is prohibitive for researchers with limited budgets. An alternative solution is to use consumer-grade devices, which are more affordable. However, these devices require proprietary software to collect data, complicating data processing, synchronization, and integration. Additionally, researchers need multiple computers to control the biofeedback system, increasing equipment costs and complexity. To address these challenges, we developed a low-cost biofeedback platform using inexpensive hardware and open-source libraries. Our software can serve as a system development kit for future studies. We conducted a simple experiment with one participant to validate the platform's effectiveness, using one baseline and two tasks that elicited distinct responses. Our low-cost biofeedback platform provides a reference architecture for researchers with limited budgets who wish to incorporate biometrics into their studies. This platform can be used to develop affective computing models in various domains, including ergonomics, human factors engineering, user experience, human behavioral studies, and human-robot interaction.
Collapse
|
6
|
Sriranga AK, Lu Q, Birrell S. A Systematic Review of In-Vehicle Physiological Indices and Sensor Technology for Driver Mental Workload Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:2214. [PMID: 36850812 PMCID: PMC9963326 DOI: 10.3390/s23042214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The concept of vehicle automation ceases to seem futuristic with the current advancement of the automotive industry. With the introduction of conditional automated vehicles, drivers are no longer expected to focus only on driving activities but are still required to stay alert to resume control. However, fluctuations in driving demands are known to alter the driver's mental workload (MWL), which might affect the driver's vehicle take-over capabilities. Driver mental workload can be specified as the driver's capacity for information processing for task performance. This paper summarizes the literature that relates to analysing driver mental workload through various in-vehicle physiological sensors focusing on cardiovascular and respiratory measures. The review highlights the type of study, hardware, method of analysis, test variable, and results of studies that have used physiological indices for MWL analysis in the automotive context.
Collapse
|
7
|
Terahertz Waves Enhance the Permeability of Sodium Channels. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
With the help of molecular dynamics simulations and an artificial sodium channel model, we corroborated that the application of terahertz stimulation at a characteristic frequency can largely increase the permeability of the sodium channel by a factor of 33.6. The mechanism is that the carboxylate groups in the filter region transfer the absorbed terahertz photon energy to the sodium ions, which increase the ions’ kinetic energy; this results in breaking the hydrated hydrogen bonding network between the hydrosphere layer of the ions and the carboxylate groups, thereby increasing their diffusion and reducing the energy barrier for them to cross the channel. This study on terahertz-driven particle transmembrane transport offers new ideas for targeted therapy of channel diseases and for developing novel integrated engineering systems in energy conversion and storage.
Collapse
|
8
|
Aliani C, Rossi E, Luchini M, Calamai I, Deodati R, Spina R, Francia P, Lanata A, Bocchi L. Automatic COVID-19 severity assessment from HRV. Sci Rep 2023; 13:1713. [PMID: 36720970 PMCID: PMC9887241 DOI: 10.1038/s41598-023-28681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
COVID-19 is known to be a cause of microvascular disease imputable to, for instance, the cytokine storm inflammatory response and the consequent blood coagulation. In this study, we propose a methodological approach for assessing the COVID-19 presence and severity based on Random Forest (RF) and Support Vector Machine (SVM) classifiers. Classifiers were applied to Heart Rate Variability (HRV) parameters extracted from photoplethysmographic (PPG) signals collected from healthy and COVID-19 affected subjects. The supervised classifiers were trained and tested on HRV parameters obtained from the PPG signals in a cohort of 50 healthy subjects and 93 COVID-19 affected subjects, divided into two groups, mild and moderate, based on the support of oxygen therapy and/or ventilation. The most informative feature set for every group's comparison was determined with the Least Absolute Shrinkage and Selection Operator (LASSO) technique. Both RF and SVM classifiers showed a high accuracy percentage during groups' comparisons. In particular, the RF classifier reached 94% of accuracy during the comparison between the healthy and minor severity COVID-19 group. Obtained results showed a strong capability of RF and SVM to discriminate between healthy subjects and COVID-19 patients and to differentiate the two different COVID-19 severity. The proposed method might be helpful for detecting, in a low-cost and fast fashion, the presence and severity of COVID-19 disease; moreover, these reasons make this method interesting as a starting point for future studies that aim to investigate its effectiveness as a possible screening method.
Collapse
Affiliation(s)
- Cosimo Aliani
- Department of Information Engineering, University of Florence, Florence, Italy.
| | - Eva Rossi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Marco Luchini
- UOs Anesthesiology and Reanimation Unit, San Giuseppe Hospital, Empoli, Italy
| | - Italo Calamai
- UOs Anesthesiology and Reanimation Unit, San Giuseppe Hospital, Empoli, Italy
| | - Rossella Deodati
- UOs Anesthesiology and Reanimation Unit, San Giuseppe Hospital, Empoli, Italy
| | - Rosario Spina
- UOs Anesthesiology and Reanimation Unit, San Giuseppe Hospital, Empoli, Italy
| | - Piergiorgio Francia
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Antonio Lanata
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Leonardo Bocchi
- Department of Information Engineering, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Duangburong S, Phruksaphanrat B, Muengtaweepongsa S. Comparison of ANN and ANFIS Models for AF Diagnosis Using RR Irregularities. APPLIED SCIENCES 2023; 13:1712. [DOI: 10.3390/app13031712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Classification of normal sinus rhythm (NSR), paroxysmal atrial fibrillation (PAF), and persistent atrial fibrillation (AF) is crucial in order to diagnose and effectively plan treatment for patients. Current classification models were primarily developed by electrocardiogram (ECG) signal databases, which may be unsuitable for local patients. Therefore, this research collected ECG signals from 60 local Thai patients (age 52.53 ± 23.92) to create a classification model. The coefficient of variance (CV), the median absolute deviation (MAD), and the root mean square of the successive differences (RMSSD) are ordinary feature variables of RR irregularities used by existing models. The square of average variation (SAV) is a newly proposed feature that extracts from the irregularity of RR intervals. All variables were found to be statistically different using ANOVA tests and Tukey’s method with a p-value less than 0.05. The methods of artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) were also tested and compared to find the best classification model. Finally, SAV showed the best performance using the ANFIS model with trapezoidal membership function, having the highest system accuracy (ACC) at 89.33%, sensitivity (SE), specificity (SP), and positive predictivity (PPR) for NSR at 100.00%, 94.00%, and 89.29%, PAF at 88.00%, 90.57%, and 81.48%, and AF at 80.00%, 96.00%, and 90.91%, respectively.
Collapse
Affiliation(s)
- Suttirak Duangburong
- Research Unit in Industrial Statistics and Operational Research, Industrial Engineering Department, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12121, Thailand
| | - Busaba Phruksaphanrat
- Research Unit in Industrial Statistics and Operational Research, Industrial Engineering Department, Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12121, Thailand
| | - Sombat Muengtaweepongsa
- Center of Excellence in Stroke, Faculty of Medicine, Thammasat University, Pathum Thani 10121, Thailand
| |
Collapse
|
10
|
On the Feasibility of Real-Time HRV Estimation Using Overly Noisy PPG Signals. COMPUTERS 2022. [DOI: 10.3390/computers11120177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart Rate Variability (HRV) is a biomarker that can be obtained non-invasively from the electrocardiogram (ECG) or the photoplethysmogram (PPG) fiducial points. However, the accuracy of HRV can be compromised by the presence of artifacts. In the herein presented work, a Simulink® model with a deep learning component was studied for overly noisy PPG signals. A subset with these noisy signals was selected for this study, with the purpose of testing a real-time machine learning based HRV estimation system in substandard artifact-ridden signals. Home-based and wearable HRV systems are prone to dealing with higher contaminated signals, given the less controlled environment where the acquisitions take place, namely daily activity movements. This was the motivation behind this work. The results for overly noisy signals show that the real-time PPG-based HRV estimation system produced RMSE and Pearson correlation coefficient mean and standard deviation of 0.178 ± 0.138 s and 0.401 ± 0.255, respectively. This RMSE value is roughly one order of magnitude above the closest comparative results for which the real-time system was also used.
Collapse
|
11
|
Kazemi K, Laitala J, Azimi I, Liljeberg P, Rahmani AM. Robust PPG Peak Detection Using Dilated Convolutional Neural Networks. SENSORS (BASEL, SWITZERLAND) 2022; 22:6054. [PMID: 36015816 PMCID: PMC9414657 DOI: 10.3390/s22166054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Accurate peak determination from noise-corrupted photoplethysmogram (PPG) signal is the basis for further analysis of physiological quantities such as heart rate. Conventional methods are designed for noise-free PPG signals and are insufficient for PPG signals with low signal-to-noise ratio (SNR). This paper focuses on enhancing PPG noise-resiliency and proposes a robust peak detection algorithm for PPG signals distorted due to noise and motion artifact. Our algorithm is based on convolutional neural networks (CNNs) with dilated convolutions. We train and evaluate the proposed method using a dataset collected via smartwatches under free-living conditions in a home-based health monitoring application. A data generator is also developed to produce noisy PPG data used for model training and evaluation. The method performance is compared against other state-of-the-art methods and is tested with SNRs ranging from 0 to 45 dB. Our method outperforms the existing adaptive threshold, transform-based, and machine learning methods. The proposed method shows overall precision, recall, and F1-score of 82%, 80%, and 81% in all the SNR ranges. In contrast, the best results obtained by the existing methods are 78%, 80%, and 79%. The proposed method proves to be accurate for detecting PPG peaks even in the presence of noise.
Collapse
Affiliation(s)
- Kianoosh Kazemi
- Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Juho Laitala
- Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Iman Azimi
- Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland
- Department of Computer Science, University of California, Irvine, CA 92697-3435, USA
- Institute for Future Health, University of California, Irvine, CA 92697, USA
| | - Pasi Liljeberg
- Department of Computing, Faculty of Technology, University of Turku, 20014 Turku, Finland
| | - Amir M. Rahmani
- Department of Computer Science, University of California, Irvine, CA 92697-3435, USA
- Institute for Future Health, University of California, Irvine, CA 92697, USA
- School of Nursing, University of California, Irvine, CA 92697, USA
| |
Collapse
|