1
|
Sawada T, Farshchi M. Visual detection of 3D mirror-symmetry and 3D rotational-symmetry. VISUAL COGNITION 2022. [DOI: 10.1080/13506285.2022.2139314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- T. Sawada
- School of Psychology, HSE University, Moscow, Russian Federation
- Akian College of Science and Engineering, American University of Armenia, Yerevan, Armenia
| | - M. Farshchi
- School of Psychology, HSE University, Moscow, Russian Federation
| |
Collapse
|
2
|
Neural responses to reflection symmetry for shapes defined by binocular disparity, and for shapes perceived as regions of background. Neuropsychologia 2021; 163:108064. [PMID: 34666111 DOI: 10.1016/j.neuropsychologia.2021.108064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022]
Abstract
Human perception of symmetry is associated with activation in an extended network of extrastriate visual areas. This activation generates an ERP called the Sustained Posterior Negativity (SPN). In most studies so far, the stimuli have been defined by luminance. We tested whether the SPN is present when stimuli are defined by stereoscopic disparity using random dot stereograms (RDS). In Experiment 1, we compared the SPN signal for contours specified by binocular disparity and contours specified by monocular cues. The SPN was equivalent, suggesting that the type of contour does not alter the SPN signal. In Experiment 2 we exploited the unique property of RDS to provide unambiguous figure-ground arrangements. Psychophysical work has shown that symmetry is more easily detected when it is a property of a single object (i.e., within a figure), compared to a property of a gap between two objects (i.e., the ground). Therefore, the target regions in this experiment could either be foreground or background. The SPN onset was delayed when the symmetry was in a ground region. This may be because object formation interferes with the processing of shape information in the ground region.
Collapse
|
3
|
Heimler B, Behor T, Dehaene S, Izard V, Amedi A. Core knowledge of geometry can develop independently of visual experience. Cognition 2021; 212:104716. [PMID: 33895652 DOI: 10.1016/j.cognition.2021.104716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 01/29/2023]
Abstract
Geometrical intuitions spontaneously drive visuo-spatial reasoning in human adults, children and animals. Is their emergence intrinsically linked to visual experience, or does it reflect a core property of cognition shared across sensory modalities? To address this question, we tested the sensitivity of blind-from-birth adults to geometrical-invariants using a haptic deviant-figure detection task. Blind participants spontaneously used many geometric concepts such as parallelism, right angles and geometrical shapes to detect intruders in haptic displays, but experienced difficulties with symmetry and complex spatial transformations. Across items, their performance was highly correlated with that of sighted adults performing the same task in touch (blindfolded) and in vision, as well as with the performances of uneducated preschoolers and Amazonian adults. Our results support the existence of an amodal core-system of geometry that arises independently of visual experience. However, performance at selecting geometric intruders was generally higher in the visual compared to the haptic modality, suggesting that sensory-specific spatial experience may play a role in refining the properties of this core-system of geometry.
Collapse
Affiliation(s)
- Benedetta Heimler
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel; Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Tel Hashomer, Israel.
| | - Tomer Behor
- The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA DSV/I2BM, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Véronique Izard
- Integrative Neuroscience and Cognition Center, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; CNRS UMR 8002, 45 rue des Saints-Pères, 75006 Paris, France
| | - Amir Amedi
- Department of Medical Neurobiology, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; The Baruch Ivcher Institute For Brain, Cognition & Technology, The Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzeliya, Israel; The Cognitive Science Program, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Rinaldi L, Ciricugno A, Merabet LB, Vecchi T, Cattaneo Z. The Effect of Blindness on Spatial Asymmetries. Brain Sci 2020; 10:brainsci10100662. [PMID: 32977398 PMCID: PMC7597958 DOI: 10.3390/brainsci10100662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 11/27/2022] Open
Abstract
The human cerebral cortex is asymmetrically organized with hemispheric lateralization pervading nearly all neural systems of the brain. Whether the lack of normal visual development affects hemispheric specialization subserving the deployment of visuospatial attention asymmetries is controversial. In principle, indeed, the lack of early visual experience may affect the lateralization of spatial functions, and the blind may rely on a different sensory input compared to the sighted. In this review article, we thus present a current state-of-the-art synthesis of empirical evidence concerning the effects of visual deprivation on the lateralization of various spatial processes (i.e., including line bisection, mirror symmetry, and localization tasks). Overall, the evidence reviewed indicates that spatial processes are supported by a right hemispheric network in the blind, hence, analogously to the sighted. Such a right-hemisphere dominance, however, seems more accentuated in the blind as compared to the sighted as indexed by the greater leftward bias shown in different spatial tasks. This is possibly the result of the more pronounced involvement of the right parietal cortex during spatial tasks in blind individuals compared to the sighted, as well as of the additional recruitment of the right occipital cortex, which would reflect the cross-modal plastic phenomena that largely characterize the blind brain.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Brain and Behavioural Science, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy;
- Correspondence:
| | | | - Lotfi B. Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02115, USA;
| | - Tomaso Vecchi
- Department of Brain and Behavioural Science, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (Z.C.)
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (A.C.); (Z.C.)
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
5
|
Rampone G, Makin ADJ. Electrophysiological responses to regularity show specificity to global form: The case of Glass patterns. Eur J Neurosci 2020; 52:3032-3046. [PMID: 32090390 PMCID: PMC8629123 DOI: 10.1111/ejn.14709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/22/2023]
Abstract
The holographic weight of evidence model (van der Helm & Leeuwenberg, J Math Psychol, 35, 1991, 151; van der Helm & Leeuwenberg, Psychol Rev, 103, 1996, 429) estimates that the perceptual goodness of moiré structures (Glass patterns), irrespective of their global form, is comparable to that of reflection symmetry. However, both behavioural and neuroscience evidences suggest that certain Glass forms (i.e. circular and radial structures) are perceptually more salient than others (i.e. translation structures) and may recruit different perceptual mechanisms. In this study, we tested whether brain responses for circular, radial and translation Glass patterns are comparable to the response for onefold bilateral reflection symmetry. We recorded an event‐related potential (ERP), called the sustained posterior negativity (SPN), which has been shown to index perceptual goodness of a range of regularities. We found that circular and radial Glass patterns generated a comparable SPN amplitude to onefold reflection symmetry (in line with the prediction of the holographic model), starting approx. 180 ms after stimulus onset. Conversely, the SPN response to translation Glass patterns had a longer latency (approx. 400 ms). These results show that Glass patterns are a special case of visual regularity, and perceptual goodness may not be fully explained by the holographic identities that constitute it. Specialised processing mechanisms might exist in the regularity‐sensitive extrastriate areas, which are tuned to global form configurations.
Collapse
Affiliation(s)
- Giulia Rampone
- School of Psychology University of Liverpool Liverpool UK
| | | |
Collapse
|
6
|
Rampone G, Makin AD, Tatlidil S, Bertamini M. Representation of symmetry in the extrastriate visual cortex from temporal integration of parts: An EEG/ERP study. Neuroimage 2019; 193:214-230. [DOI: 10.1016/j.neuroimage.2019.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/17/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022] Open
|
7
|
Abstract
Regularities like symmetry (mirror reflection) and repetition (translation) play an important role in both visual and haptic (active touch) shape perception. Altering figure-ground factors to change what is perceived as an object influences regularity detection. For vision, symmetry is usually easier to detect within one object, whereas repetition is easier to detect across two objects. For haptics, we have not found this interaction between regularity type and objectness (Cecchetto & Lawson, Journal of Experimental Psychology: Human Perception and Performance, 43, 103-125, 2017; Lawson, Ajvani, & Cecchetto, Experimental Psychology, 63, 197-214, 2016). However, our studies used repetition stimuli with mismatched concavities, convexities, and luminance, and so had mismatched contour polarities. Such stimuli may be processed differently to stimuli with matching contour polarities. We investigated this possibility. For haptics, speeded symmetry and repetition detection for novel, planar shapes was similar. Performance deteriorated strikingly if contour polarity mismatched (keeping objectness constant), whilst there was a modest disadvantage for between-2objects:facing-sides compared to within-1object:outer-sides comparisons (keeping contour polarity constant). For the same task for vision, symmetry detection was similar to haptics (strong costs for mismatched contour polarity, weaker costs for between-2objects:facing-sides comparisons), but repetition detection was very different (weak costs for mismatched contour polarity, strong benefits for between-2objects:facing-sides comparisons). Thus, objectness was less influential than contour polarity for both haptic and visual symmetry detection, and for haptic repetition detection. However, for visual repetition detection, objectness effects reversed direction (within-1object:outer-sides comparisons were harder) and were stronger than contour polarity effects. This pattern of results suggests that regularity detection reflects information extraction as well as regularity distributions in the physical world.
Collapse
|
8
|
Not all visual symmetry is equal: Partially distinct neural bases for vertical and horizontal symmetry. Neuropsychologia 2017; 104:126-132. [DOI: 10.1016/j.neuropsychologia.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/12/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022]
|
9
|
|
10
|
Lawson R, Ajvani H, Cecchetto S. Effects of Line Separation and Exploration on the Visual and Haptic Detection of Symmetry and Repetition. Exp Psychol 2017; 63:197-214. [PMID: 27750520 PMCID: PMC5082038 DOI: 10.1027/1618-3169/a000329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Detection of regularities (e.g., symmetry, repetition) can be used to investigate object and shape perception. Symmetry and nearby lines may both signal that one object is present, so moving lines apart may disrupt symmetry detection, while repetition may signal that multiple objects are present. Participants discriminated symmetrical/irregular and repeated/irregular pairs of lines. For vision, as predicted, increased line separation disrupted symmetry detection more than repetition detection. For haptics, symmetry and repetition detection were similarly disrupted by increased line separation; also, symmetry was easier to detect than repetition for one-handed exploration and for body midline-aligned stimuli, whereas symmetry was harder to detect than repetition with two-handed exploration of stimuli oriented across the body. These effects of exploration and stimulus orientation show the influence of modality-specific processing rather than properties of the external world on regularity detection. These processes may, in turn, provide insights into the nature of objectness in vision and in touch.
Collapse
Affiliation(s)
| | - Henna Ajvani
- 1 School of Psychology, University of Liverpool, UK
| | | |
Collapse
|
11
|
Affiliation(s)
- Zaira Cattaneo
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
| |
Collapse
|