1
|
Desorcy-Scherer K, Zuniga-Chaves I, Reisner MA, Suen G, Hernandez LL. Investigating the influence of perinatal fluoxetine exposure on murine gut microbial communities during pregnancy and lactation. Sci Rep 2024; 14:13762. [PMID: 38877103 PMCID: PMC11178873 DOI: 10.1038/s41598-024-62224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/16/2024] Open
Abstract
Selective Serotonin Reuptake Inhibitor (SSRI) therapy is common among perinatal populations for the treatment of mood disorders. Medications can affect diversity and composition of the gut microbiome, which plays a key role in modulating health. While previous studies have examined the effects of antidepressant exposure on the maternal gut microbiome, whether SSRI exposure affects the offspring gut microbiome is unknown. We investigated the effects of maternal fluoxetine exposure on the gut microbiome of maternal and offspring mice during pregnancy and lactation (embryonic day 10-lactation day 21; E10-L21). Stool samples collected on E17, L11, L15, and L21 were examined using 16S rRNA sequencing. Our results suggest that maternal fluoxetine exposure may result in decreased alpha diversity of the offspring gut microbiome in early life. Furthermore, we observed several genera-specific differences in the gut microbiome based on treatment, specifically of Turicibacter, Parasutterella, and Romboutsia. These findings support our understanding of gut health, as dysbiotic development of the gut microbiome has been associated with local and systemic health problems including gastrointestinal morbidities and interrupted growth patterns in infants. Future research should pursue study in human populations and those at high risk for gut microbial dysbiosis and intestinal injury.
Collapse
Affiliation(s)
- Katelyn Desorcy-Scherer
- School of Nursing, University of Wisconsin-Madison, 701 Highland Avenue, Madison, WI, 54705, USA.
| | - Ibrahim Zuniga-Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Maggie A Reisner
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
2
|
Abujilban S, Al-Omari H, Issa E, ALhamdan A, Al-Nabulsi L, Mrayan L, Mahmoud KF, Kernohan WG. Effectiveness of Telephone-Based Interpersonal Psychotherapy on Antenatal Depressive Symptoms: A Prospective Randomized Controlled Trial in The Kingdom of Jordan. J Am Psychiatr Nurses Assoc 2024; 30:635-645. [PMID: 37148251 DOI: 10.1177/10783903231171595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Jordanian pregnant women report high prevalence of antenatal depressive symptoms, compared to their counterparts internationally. One potential nonpharmacological intervention is Interpersonal Psychotherapy (IPT), accessed by telephone. AIM The aim of this study is to compare the depressive symptom level(s) among Jordanian pregnant women who received IPT treatment with those who received routine antenatal care. METHODS A prospective randomized controlled trial design was used. Following ethical approval, a sample of 100 pregnant women (50 in each group) at 24 to 37 weeks gestation, was drawn from one governmental public hospital. Seven sessions (each half an hour) of telephone-based IPT were offered twice weekly to those assigned to the intervention arm: one pretherapy orientation, five intermediates, and one closing session. The Edinburgh Postnatal Depression Scale was administered before and after the intervention. Analysis of covariance was used to detect the intervention effect. The two groups were matched based on demographic and health characteristics. RESULTS Compared to the control group, pregnant women who received the intervention reported fewer depressive symptoms. CONCLUSIONS Midwives and general nurses should screen all pregnant women for symptoms of depression. The effectiveness of IPT treatment in alleviating depressive symptoms indicates the importance of using such supportive interventions by midwives and general nurses, who are trained in psycho-educational counseling techniques. Moreover, data provided by this study may encourage policymakers to legislate policies that make psychotherapists available and accessible in antenatal care units and ensure that staff have adequate training via continuing education programs to screen for antenatal depressive symptoms.
Collapse
Affiliation(s)
- Sanaa Abujilban
- Sanaa Abujilban, PhD, MSN, CPT, RM, RN, Department of Maternal, Child and Family Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Hasan Al-Omari
- Hasan Al-Omari, PhD, ARNP, RN, Department of Community and Mental Health Nursing, Faculty of Nursing. The Hashemite University, Zarqa, Jordan
| | - Esra'a Issa
- Esra'a Issa, MSN, Department of Maternal, Child and Family Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Ayat ALhamdan
- Ayat ALhamdan, MSN, National Center Hospital for Mental Health, Amman, Jordan
| | - Lama Al-Nabulsi
- Lama Al-nabulsi, MSN, King Hussein Cancer Center, Amman, Jordan
| | - Lina Mrayan
- Lina Mrayan, PhD, Department of Maternal, Child and Family Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - Khadejah F Mahmoud
- Khadejah F. Mahmoud, PhD, MSN, RN, Department of Community and Mental Health Nursing, Faculty of Nursing, The Hashemite University, Zarqa, Jordan
| | - W George Kernohan
- W. George Kernohan, PhD, School of Nursing, Institute of Nursing and Health Research, Ulster University, Newtownabbey, UK
| |
Collapse
|
3
|
Desorcy-Scherer K, Fricke HP, Hernandez LL. Selective serotonin reuptake inhibitors during pregnancy and lactation: A scoping review of effects on the maternal and infant gut microbiome. Dev Psychobiol 2024; 66:e22441. [PMID: 38131241 PMCID: PMC11017378 DOI: 10.1002/dev.22441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Perinatal mood disorders are a tremendous burden to childbearing families and treatment with selective serotonin reuptake inhibitor (SSRI) antidepressants is increasingly common. Exposure to SSRIs may affect serotonin signaling and ultimately, microbes that live in the gut. Health of the gut microbiome during pregnancy, lactation, and early infancy is critical, yet there is limited evidence to describe the relationship between SSRI exposure and gut microbiome status in this population. The purpose of this Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)-compliant scoping review is to assess evidence and describe key concepts regarding whether SSRI exposure affects the maternal and infant gut microbiome. Sources were collected from PubMed, Web of Science, and Scopus databases, and an additional gray literature search was performed. Our search criteria returned only three sources, two rodent models and one human subjects research study. Results suggest that fluoxetine (SSRI) exposure may affect maternal gut microbiome dynamics during pregnancy and lactation. There were no available sources to describe the relationship between perinatal SSRI exposure and the infant gut microbiome. There is a significant gap in the literature regarding whether SSRI antidepressants affect the maternal and infant gut microbiome. Future studies are required to better understand how SSRI antidepressant exposure affects perinatal health.
Collapse
Affiliation(s)
| | - Hannah P. Fricke
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Fricke HP, Krajco CJ, Perry MJ, Desorcy‐Scherer KM, Wake LA, Charles JF, Hernandez LL. Developmental fluoxetine exposure affects adolescent and adult bone depending on the dose and period of exposure in mice. Physiol Rep 2023; 11:e15881. [PMID: 38031314 PMCID: PMC10687345 DOI: 10.14814/phy2.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
At the end of gestation, fetal skeleton rapidly accumulates calcium, and bone development continues in offspring postnatally. To accommodate, maternal skeletal physiology is modulated in a serotonin-dependent manner. Selective serotonin reuptake inhibitors (SSRIs) are generally considered safe for treatment of major depressive disorder, postpartum depression, and other psychiatric illnesses during the peripartum period, but because serotonin affects bone remodeling, SSRIs are associated with decreased bone mass across all ages and sexes, and the impact of SSRIs during fetal and postnatal development has not been fully investigated. In the present study, our aim was to examine developmental fluoxetine exposure on offspring skeleton and to assess varying degrees of impact depending on dose and window of exposure in short-term and long-term contexts. We established that a low dose of lactational fluoxetine exposure caused a greater degree of insult to offspring bone than either a low dose during fetal and postpartum development or a high dose during lactation only in mice. We further discovered lasting impacts of developmental fluoxetine exposure, especially during lactation only, on adult bone and body composition. Herein, we provide evidence fluoxetine exposure during early development may have detrimental effects on the skeleton of offspring at weaning and into adulthood.
Collapse
Affiliation(s)
- Hannah P. Fricke
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chandler J. Krajco
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Molly J. Perry
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Katelyn M. Desorcy‐Scherer
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- School of NursingUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Lella A. Wake
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Julia F. Charles
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Laura L. Hernandez
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Animal and Dairy SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
5
|
Fricke HP, Krajco CJ, Perry MJ, Reisner MA, Brettingen LJ, Wake LA, Charles JF, Hernandez LL. In utero, lactational, or peripartal fluoxetine administration has differential implications on the murine maternal skeleton. Physiol Rep 2023; 11:e15837. [PMID: 37813559 PMCID: PMC10562136 DOI: 10.14814/phy2.15837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The peripartal period is marked by alterations in calcium metabolism to accommodate for embryonic skeletal mineralization and support bone development of offspring in early life, and serotonin plays a critical role in modulating peripartal bone remodeling. Selective serotonin reuptake inhibitors (SSRIs) are commonly used as first-line treatment for psychiatric illness during pregnancy and the postpartum period and considered safe for maternal use during this time frame. In order to evaluate the effect of peripartal alterations of the serotonergic system on maternal skeletal physiology, we treated dams with the SSRI fluoxetine during gestation only, lactation only, or during the entire peripartal period. Overall, we found a low dose of fluoxetine during gestation only had minimal impacts on maternal bone at weaning, but there were implications on maternal skeleton at weaning when dams were exposed during lactation only or during the entire peripartal period. We found that these effects were differential between female mice dosed lactationally or peripartally, and there were also impacts on maternal mammary gland at weaning in both of these groups. Though SSRIs are largely considered safe maternally during the peripartal period, this study raises the question whether safety of SSRIs, specifically fluoxetine, during the peripartal period should be reevaluated.
Collapse
Affiliation(s)
- Hannah P. Fricke
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Chandler J. Krajco
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Molly J. Perry
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Maggie A. Reisner
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | | | - Lella A. Wake
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Julia F. Charles
- Departments of Orthopedics and MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Laura L. Hernandez
- Endocrinology and Reproductive Physiology ProgramUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| |
Collapse
|
6
|
Domingues RR, Wiltbank MC, Hernandez LL. Maternal serotonin: implications for the use of selective serotonin reuptake inhibitors during gestation†. Biol Reprod 2023; 109:17-28. [PMID: 37098165 PMCID: PMC10344603 DOI: 10.1093/biolre/ioad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023] Open
Abstract
Maternal use of antidepressants has increased throughout the last decades; selective serotonin reuptake inhibitors (SSRI) are the most prescribed antidepressants. Despite the widespread use of SSRI by women during reproductive age and pregnant women, an increasing amount of research warns of possible detrimental effects of maternal use of SSRI during pregnancy including low birthweight/small for gestational age and preterm birth. In this review, we revisited the impact of maternal use of SSRI during pregnancy, its impact on serotonin homeostasis in the maternal and fetal circulation and the placenta, and its impact on pregnancy outcomes-particularly intrauterine growth restriction and preterm birth. Maternal use of SSRI increases maternal and fetal serotonin. The increase in maternal circulating serotonin and serotonin signaling likely promotes vasoconstriction of the uterine and placental vascular beds decreasing blood perfusion to the uterus and consequently to the placenta and fetus with potential impact on placental function and fetal development. Several adverse pregnancy outcomes are similar between women, sheep, and rodents (decreased placental size, decreased birthweight, shorter gestation length/preterm birth, neonatal morbidity, and mortality) highlighting the importance of animal studies to assess the impacts of SSRI. Herein, we address the complex interactions between maternal SSRI use during gestation, circulating serotonin, and the regulation of blood perfusion to the uterus and fetoplacental unit, fetal growth, and pregnancy complications.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Domingues RR, Wiltbank MC, Hernandez LL. The antidepressant fluoxetine (Prozac®) modulates estrogen signaling in the uterus and alters estrous cycles in mice. Mol Cell Endocrinol 2023; 559:111783. [PMID: 36198363 PMCID: PMC10038119 DOI: 10.1016/j.mce.2022.111783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRI) are the most used antidepressants. However, up to 80% of women taking SSRI suffer from sexual dysfunction. We investigated the effects of fluoxetine (Prozac®) (low and high dose, n = 6-7/group) on reproductive function and the regulation of the estrous cycle. All mice treated with high dose of fluoxetine had interruption of estrous cycles within a few days after onset of treatment. When treated for 14 days, mice in the high dose group had fewer CL, often lack of any CL, and antral follicles. Uterine expression of estrogen receptor alpha, G-protein coupled estrogen receptor, and steroidogenesis enzymes were upregulated in the high dose group. Nevertheless, decreased expression of connexin 43 and alkaline phosphatase and increased expression of insulin-like growth factor-binding protein 3 and monoamine oxidase A are consistent with decreased estrogen signaling and the decreased uterine weight. Taken together, fluoxetine modulates estrogen synthesis/signaling and dysregulates estrous cycles.
Collapse
Affiliation(s)
- Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA; Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Domingues RR, Beard AD, Connelly MK, Wiltbank MC, Hernandez LL. Fluoxetine-induced perinatal morbidity in a sheep model. Front Med (Lausanne) 2022; 9:955560. [PMID: 35991651 PMCID: PMC9386076 DOI: 10.3389/fmed.2022.955560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are the most common antidepressants used by pregnant women. However, adverse pregnancy outcomes have been described in women taking SSRI during pregnancy—placental lesions, premature birth, poor neonatal adaptation. We aimed to investigate the effects of fluoxetine (Prozac® most commonly used SSRI) treatment during the last month of gestation on pregnancy complications, placental and neonatal health in a non-depressed sheep model. On day 119 ± 1 postbreeding (experimental day 0; E0) of a 151-day expected gestation, Hampshire ewes were randomly assigned to receive fluoxetine (n = 9 ewes, 15 lambs; daily intravenously treatment with 10 mg/kg on E0 and E1 and 5 mg/kg daily thereafter until parturition) or to a control group (n = 10; 14 lambs; vehicle only). Blood samples from ewes were collected throughout the experimental period and postpartum; blood from lambs were collected postpartum. Analysis of variance was used for statistical analysis. Fluoxetine treatment reduced placentome growth during the last month of pregnancy. Gestation length was decreased by 4.5 days in fluoxetine-treated ewes. Birthweight was reduced in lambs exposed to fluoxetine in utero; weights remained decreased until postnatal day 3. Placentome diameter by birthweight ratio was not different between groups suggesting that the decreased placentome diameter was accompanied by decreased lamb birthweight. During the first week postnatal, lambs exposed to fluoxetine in utero had decreased blood pH and decreased total carbon dioxide, bicarbonate, and base excess and increased lactate (days 3–6), collectively indicative of metabolic acidemia. Additionally, ionized calcium was decreased between postnatal days 0 to 4 in lambs exposed to fluoxetine in utero. Using a non-depressed animal model clearly defines a role for SSRI on the occurrence of perinatal complications and neonatal morbidity. The decreased placentome diameter, shortened gestation, decreased birthweight, decreased calcium levels, and neonatal acidemia suggest the occurrence of intrauterine growth restriction. The persistence of neonatal acidemia for several days postpartum suggests poor neonatal adaptation to extrauterine environment.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam D. Beard
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Meghan K. Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez
| |
Collapse
|
9
|
Domingues RR, Wiltbank MC, Hernandez LL. Pregnancy Complications and Neonatal Mortality in a Serotonin Transporter Null Mouse Model: Insight Into the Use of Selective Serotonin Reuptake Inhibitor During Pregnancy. Front Med (Lausanne) 2022; 9:848581. [PMID: 35360732 PMCID: PMC8960382 DOI: 10.3389/fmed.2022.848581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRI) are widely prescribed to pregnant woman. Although some SSRI compounds are known to cause pregnancy loss and fetal malformations, other SSRI continue to be used by pregnant women. However, several studies have associated the use of SSRI with adverse pregnancy outcomes: intrauterine growth restriction, preterm birth, and neonatal morbidity. Nonetheless, interpretation of studies in humans are typically complicated by the adverse pregnancy outcomes caused by depression itself. Therefore, we used a mutant mouse model with genetic ablation of the serotonin transporter, the target site for SSRI, to unravel the role of the serotonin transporter on pregnancy outcomes. The serotonin transporter null mice had increased pregnancy loss (17.5 vs. 0%), decreased number of pups born (6.6 ± 0.2 vs. 7.5 ± 0.2), and increased neonatal mortality (2.3-fold). Furthermore, preterm birth, dystocia, and fetal malformations were only observed in serotonin transporter null mice. This genetically ablated serotonin transporter mouse recapitulates several adverse pregnancy outcomes similar to those in women undergoing SSRI treatment during gestation. Additionally, neonatal loss in the present study reproduced a sudden infant death phenotype as in humans and mice with altered serotonergic signaling. In conclusion, findings from this study demonstrate a role for serotonin transporter in pregnancy maintenance and neonatal health. Additionally, it suggests that the adverse pregnancy outcomes in women taking SSRI during gestation might be due to altered serotonin transporter function caused by SSRI independent of underlying depression. This is a critical finding, given the number of women prescribed SSRI during pregnancy, and provides the framework for critical research in this area.
Collapse
Affiliation(s)
- Rafael R. Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Milo C. Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura L. Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Laura L. Hernandez,
| |
Collapse
|
10
|
Sheftel CM, Sartori LC, Hunt ER, Manuel RSJ, Bell AM, Domingues RR, Wake LA, Scharpf BR, Vezina CM, Charles JF, Hernandez LL. Peripartal treatment with low-dose sertraline accelerates mammary gland involution and has minimal effects on maternal and offspring bone. Physiol Rep 2022; 10:e15204. [PMID: 35234346 PMCID: PMC8889862 DOI: 10.14814/phy2.15204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Women mobilize up to 10% of their bone mass during lactation to provide milk calcium. About 8%–13% of mothers use selective serotonin reuptake inhibitors (SSRI) to treat peripartum depression, but SSRIs independently decrease bone mass. Previously, peripartal use of the SSRI fluoxetine reduced maternal bone mass sustained post‐weaning and reduced offspring bone length. To determine whether these effects were fluoxetine‐specific or consistent across SSRI compounds, we examined maternal and offspring bone health using the most prescribed SSRI, sertraline. C57BL/6 mice were given 10 mg/kg/day sertraline, from the beginning of pregnancy through the end of lactation. Simultaneously, we treated nulliparous females on the same days as the primiparous groups, resulting in age‐matched nulliparous groups. Dams were euthanized at lactation day 10 (peak lactation, n = 7 vehicle; n = 9 sertraline), lactation day 21 (weaning, n = 9 vehicle; n = 9 sertraline), or 3m post‐weaning (n = 10 vehicle; n = 10 sertraline) for analysis. Offspring were euthanized at peak lactation or weaning for analysis. We determined that peripartum sertraline treatment decreased maternal circulating calcium concentrations across the treatment period, which was also seen in nulliparous treated females. Sertraline reduced the bone formation marker, procollagen 1 intact N‐terminal propeptide, and tended to reduce maternal BV/TV at 3m post‐weaning but did not impact maternal or offspring bone health otherwise. Similarly, sertraline did not reduce nulliparous female bone mass. However, sertraline reduced immunofluorescence staining of the tight junction protein, zona occludens in the mammary gland, and altered alveoli morphology, suggesting sertraline may accelerate mammary gland involution. These findings indicate that peripartum sertraline treatment may be a safer SSRI for maternal and offspring bone rather than fluoxetine.
Collapse
Affiliation(s)
- Celeste M Sheftel
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luma C Sartori
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emily R Hunt
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Robbie S J Manuel
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Autumn M Bell
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rafael R Domingues
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lella A Wake
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon R Scharpf
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura L Hernandez
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|