1
|
Silva VFM, Silva A, Garrido EMPJ, Borges F, Gaspar A, Garrido JMPJ. Microencapsulation of the Biocide Benzisothiazolinone (BIT) by Inclusion in Methyl-β-cyclodextrin and Screening of Its Antibacterial and Ecotoxicity Properties. TOXICS 2024; 12:674. [PMID: 39330602 PMCID: PMC11435904 DOI: 10.3390/toxics12090674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
The excessive use of biocides has considerable environmental and economic impacts; this is why new technologies have been sought to decrease the concentration levels applied in an effort to reduce the use of these substances. Microencapsulation using cyclodextrins has been widely used in the food and pharmaceutical industries as a way of reducing the concentrations of the active substance necessary to achieve a biological effect and/or eliminate its irritating or toxicological effects. In this study, the inclusion complexation behavior and binding ability of benzothiazolinone (BIT) with different β-cyclodextrins (β-CD, HP-β-CD, and Me-β-CD) was investigated. The intermolecular interactions were examined through UV and FTIR spectroscopy, DSC, 1D 1H NMR, and 2D ROESY. The highest stability constant was observed for the BIT/Me-β-CD inclusion complex (299.5 ± 2.9 M-1). Antibacterial activity was investigated against Staphylococcus aureus and Escherichia coli, and the results revealed that the BIT/Me-β-CD inclusion complex displays a higher antibacterial activity than BIT. The acute toxicity of the biocide and inclusion complex was also examined using the photobacterium Aliivibrio fischeri. Although BIT exhibited higher toxicity than the inclusion complex, further investigation is needed due to the quorum quenching effect of β-CDs. The data found suggest that BIT microencapsulation can increase its aqueous solubility and can be used as an effective tool to improve its chemical, biological, and ecotoxicological properties.
Collapse
Affiliation(s)
- Vânia F. M. Silva
- CIETI, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (V.F.M.S.); (E.M.P.J.G.)
| | - Aurora Silva
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain;
- REQUIMTE/LAQV, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal
| | - Ermelinda M. P. J. Garrido
- CIETI, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (V.F.M.S.); (E.M.P.J.G.)
- CIQUP-IMS, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Alexandra Gaspar
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Jorge M. P. J. Garrido
- CIETI, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal; (V.F.M.S.); (E.M.P.J.G.)
- CIQUP-IMS, ISEP, Polytechnic of Porto, 4249-015 Porto, Portugal
| |
Collapse
|
2
|
Wang Z, Geng S, Zhang J, Yang H, Shi S, Zhao L, Luo X, Cao Z. Methods for the characterisation of dermal uptake: Progress and perspectives for organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 183:108400. [PMID: 38142534 DOI: 10.1016/j.envint.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Organophosphate esters (OPEs) are a group of pollutants that are widely detected in the environment at high concentrations. They can adversely affect human health through multiple routes of exposure, including dermal uptake. Although attention has been paid to achieving an accurate and complete quantification of the dermal uptake of OPEs, existing evaluation methods and parameters have obvious weaknesses. This study reviewed two main categories of methodologies, namely the relative absorption (RA) model and the permeability coefficient (PC) model, which are widely used to assess the dermal uptake of OPEs. Although the PC model is more accurate and is increasingly used, the most important parameter in this model, the permeability coefficient (Kp), has been poorly characterised for OPEs, resulting in considerable errors in the estimation of the dermal uptake of OPEs. Thus, the detailed in vitro methods for the determination of Kp are summarised and sorted. Furthermore, the commonly used skin membranes are identified and the factors affecting Kp and corresponding mechanisms are discussed. In addition, the experimental conditions, conclusions, and available data on Kp values of the OPEs are thoroughly summarised. Finally, the corresponding knowledge gaps are proposed, and a more accurate and sophisticated experimental system and unknown Kp values for OPEs are suggested.
Collapse
Affiliation(s)
- Zhexi Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shuxiang Geng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hengkang Yang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Leicheng Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
3
|
Lee S, Park HJ, Lee EB, Lee DH, Choi D, Lim KM. Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT. TOXICS 2022; 10:770. [PMID: 36548604 PMCID: PMC9785571 DOI: 10.3390/toxics10120770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Biocides are widely used in everyday life, and accordingly, human exposure to them is inevitable. Especially, the inhalational exposure of humans to biocides and resultant respiratory toxicity are gaining public interest due to the recent catastrophe associated with humidifier disinfectants. Aerosolized chemicals are subject to gravitational deposition and chemical degradation. Therefore, the characterization of the disposition of aerosols is essential to estimate the inhalational exposure to biocides. Here, we compared the disposition of aerosols of one of the commonly used biocide classes, isothiazolinone-based biocides, BIT, MIT, and OIT. An acrylic chamber (40 cm × 40 cm × 50 cm) was created to simulate the indoor environment, and a vacuum pump was used to create airflow (1 LPM). Biocides were sprayed from a vertical nebulizer placed on the ceiling of the chamber, and the distribution of particle sizes and volume was measured using the Optical Particle Sizer (OPS) 3330 device. During and after the aerosol spraying, airborne biocides and those deposited on the surface of the chamber were sampled to measure the deposition using LC-MS/MS. As a result, the broad particle size distribution was observed ranging from 0.3 to 8 μm during the nebulization. The inhalable particle faction (>2 μm) of the isothiazolinones was 32−67.9% in number but 1.2 to 6.4% in volume. Most of the aerosolized biocides were deposited on the chamber’s surface while only a minimal portion was airborne (<1%) after the nebulization. More importantly, significant amounts of MIT and OIT were degraded during aerosolization, resulting in poor total recovery compared to BIT (31%, 71% vs. 97% BIT). This result suggests that some isothiazolinones may become unstable during nebulization, affecting their disposition and human exposure significantly.
Collapse
Affiliation(s)
- Seungmi Lee
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heui-Jin Park
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eunice B. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Do Hyeon Lee
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Republic of Korea
| | - Dalwoong Choi
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Korea University, Seoul 02481, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Pharmacokinetics and the Dermal Absorption of Bromochlorophene, a Cosmetic Preservative Ingredient, in Rats. TOXICS 2022; 10:toxics10060329. [PMID: 35736937 PMCID: PMC9229563 DOI: 10.3390/toxics10060329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 01/05/2023]
Abstract
The cosmetic industry has flourished in recent years. Accordingly, the safety of cosmetic ingredients is increasing. Bromochlorophene (BCP) is a commonly used cosmetic preservative. To evaluate the effects of BCP exposure, in vitro dermal absorption and in vivo pharmacokinetic (PK) studies were conducted using gel and cream formulations. The Franz diffusion cell system and rat dorsal skin were used for tests according to the Korea Ministry of Food and Drug Safety guidelines for in vitro skin absorption methods. After the dermal application (1.13 mg/cm2) of BCP in the gel and cream formulations, liquid chromatography–mass spectrometry (LC–MS/MS) was used to evaluate the amount of BCP that remained unabsorbed on the skin (WASH), and that was present in the receptor fluid (RF), stratum corneum (SC), and (epi)dermis (SKIN). The total dermal absorption rate of BCP was 7.42 ± 0.74% for the gel formulation and 1.5 ± 0.9% for the cream formulation. Total recovery in an in vitro dermal absorption study was 109.12 ± 8.79% and 105.43 ± 11.07% for the gel and cream formulations, respectively. In vivo PK and dermal absorption studies of BCP were performed following the Organization for Economic Cooperation and Development guidelines 417 and 427, respectively. When intravenous (i.v.) pharmacokinetics was performed, BCP was dissolved in glycerol formal and injected into the tail vein (n = 3) of the rats at doses of 1 and 0.2 mg/kg. Dermal PK parameters were estimated by the application of the gel and cream formulations (2.34 mg/kg of BCP as an active ingredient) to the dorsal skin of the rats. Intravenous and dermal PK parameters were analyzed using a non-compartmental method. The dermal bioavailability of BCP was determined as 12.20 ± 2.63% and 4.65 ± 0.60% for the gel and cream formulations, respectively. The representative dermal absorption of BCP was evaluated to be 12.20 ± 2.63% based on the results of the in vivo PK study.
Collapse
|