1
|
Kasban H, Ali EH, Arafa H. In situ gamma radiometry of river bottom based on natural radioactivity measurements. Appl Radiat Isot 2025; 219:111711. [PMID: 39947032 DOI: 10.1016/j.apradiso.2025.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Naturally occurring radioactive material (NORM) mapping at the bottom of rivers or seas is important for the environment, health, industry, and regulatory. NORM mapping procedure under the river bottom is complicated due to several technological, logistical, and environmental challenges. NORM mapping process normally carried out by taking samples from the location and analyzing it in the laboratory and hence it is time consuming especially if a large area is required to be scanned. This paper presents an efficient system for fast in situ mapping of NORM mapping under the river bottom. The system consists of a waterproof (NaI(Tl)) scintillation detector designed to immerge under water with a mechanical system to ensure that it is located on the surface under water. The detector is connected to Data Acquisition System (DAS) on the boat through waterproof coaxial cable. Globalization Positioning System (GPS) is used for determining the location of measurement. System Software provides a fast-mapping Gamma count rates in real time. The system has been tested at Rosetta branch of the river Nile in Egypt. The practical experiments, two navigations have been carried out with different boat speeds (2 km/h and 6 km/h). The measured data has been visualized and analyzed in situ and proved the efficiency of hardware and software. In addition, the obtained measurements show the different concentrations of NORM in the bottom of the river. The results indicate that the NORM is increased when moving toward the Mediterranean Sea direction which reflects that the composition of the soil material is changed at the intersection of the river Nile with the sea. The results also show that the longer sampling times allow more gamma counts to be recorded, the optimal scanning speed depends on the activity level of the source, the detector's sensitivity, and the objective of the NORM mapping.
Collapse
Affiliation(s)
- H Kasban
- Engineering Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt.
| | - Elsayed H Ali
- Engineering Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt
| | - H Arafa
- Engineering Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Egypt
| |
Collapse
|
2
|
Motta CM, Carotenuto R, Fogliano C, Rosati L, Denre P, Panzuto R, Romano R, Miccoli G, Simoniello P, Avallone B. Olfactory Impairment and Recovery in Zebrafish ( Danio rerio) Following Cadmium Exposure. BIOLOGY 2025; 14:77. [PMID: 39857307 PMCID: PMC11761868 DOI: 10.3390/biology14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival. Consequently, this study investigated the impact of short-term exposure (96 h) to 25 µM cadmium chloride on the olfactory system of adult zebrafish. The research aimed to assess structural and functional changes in the zebrafish's olfactory lamellae, providing a deeper understanding of how cadmium affects the sense of smell in this aquatic species. After exposure, cyto-anatomical alterations in the lamellae were analysed using light microscopy and immunocytochemistry. They revealed severe lamellar edema, epithelial thickening, and an increased number of apoptotic and crypt cells. Rodlet and goblet cells also increased by 3.5- and 2.5-fold, respectively, compared to control lamellae, and collagen density in the lamina propria increased 1.7-fold. Cadmium upregulated metallothioneins and increased the number of PCNA-positive cells. The olfactory function was assessed through a behavioural odour recognition test, followed by a recovery phase in which zebrafish exposed to cadmium were placed in clean water for six days. The exposed fish performed poorly, failing to reach food in five consecutive trials. However, lamellar damage was reduced after the recovery period, and their performance improved, becoming comparable to the control group. These results suggest that cadmium disrupts the sense of smell, and that recovery is possible after short-term exposure. This evidence sheds light on aspects of animal survival that are often overlooked when assessing environmental pollution.
Collapse
Affiliation(s)
- Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Zoological Station Anton Dohrn, 80122 Naples, Italy;
| | - Rossana Romano
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Gianluca Miccoli
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Palma Simoniello
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| |
Collapse
|
3
|
Sulaiman MA, Kumari A. Unveiling the Rising Threat of Cadmium Pollution and Alarming Health Risks Associated with the Consumption of 15 Commercially Important Fish Species in the Middle Stretch of River Ganga, at Patna, India. Biol Trace Elem Res 2025; 203:422-441. [PMID: 38607526 DOI: 10.1007/s12011-024-04164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Among environmental contaminants, the rising level of cadmium in freshwater ecosystems is one of the most significant global concerns. The study addresses the current pollution status of cadmium in the middle stretch of River Ganga and explores the potential hazard associated with the consumption of 15 commercially important fish species by the inhabitants. Together 72 water and sediment samples were analyzed from the four representative sampling sites of River Ganga after the surveillance of major anthropogenic stressors. The concentration of cadmium ranges from 0.003 to 0.011 mg/l and 0.2 to 3.48 mg/kg in water and sediment respectively in 2022. The average concentration of cadmium was recorded to be the highest in Channa punctatus (1.35 mg/kg), followed by Rita rita = Johnius coitor (1.15 mg/kg), and the lowest in Labeo bata (0.2 mg/kg). The finding highlights greater exposure duration and feeding preferences of fish species have played a significant role in the bioaccumulation of the metal in the riverine system. Notably, the domestic effluents, agricultural runoffs, and pollutants brought along by the tributaries of River Ganga are identified as the main anthropogenic stressors for the moderate to considerably polluted status of the River Ganga. The target hazard quotient (THQ) and target carcinogenic risk (TCR) have revealed a higher susceptibility to cadmium contamination in children followed by females, and males. In addition, hierarchical cluster analysis (HCA) has noted intake of Rita rita, Channa punctata, Puntius sophore, and Johnius coitor could be more detrimental to children's health than adults.
Collapse
Affiliation(s)
| | - Anupma Kumari
- Department of Zoology, Patna University, Patna, 800005, India.
| |
Collapse
|
4
|
Hossain MM, Jahan I, Dar MA, Dhanavade MJ, Mamtaz AFB, Maxwell SJ, Han S, Zhu D. A Review of Potentially Toxic Elements in Sediment, Water, and Aquatic Species from the River Ecosystems. TOXICS 2024; 13:26. [PMID: 39853025 PMCID: PMC11769463 DOI: 10.3390/toxics13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025]
Abstract
There is concern over potential toxic elements (PTEs) impacting river ecosystems due to human and industrial activities. The river's water, sediment, and aquatic life are all severely affected by the release of chemical and urban waste. PTE concentrations in sediment, water, and aquatic species from river ecosystems are reported in this review. Among the PTEs, chromium (Cr), cadmium (Cd), lead (Pb), and nickel (Ni) revealed high pollution levels in water and aquatic species (fish and shellfish) at many rivers. The Karnaphuli, Ganga, and Lee rivers have high levels of Pb and Cd contamination, while the Buriganga and Korotoa rivers' water had notable Ni contamination. A number of rivers with PTEs showed ecological risk as a consequence of the sediment's potential ecological risk (PER), the pollutant load index (PLI), and the geoaccumulation index (Igeo). A comprehensive study suggests elevated PLI values in river sediments, indicating significant pollution levels, particularly in the Buriganga River sediment, marked by high Igeo values. The PER of the Shitalakshya and Buriganga rivers was marked as very high risk, with an Eir > 320, while the Dhaleshwari and Khiru rivers showed 'high risk', with 160 = Eir < 320. It was found that fish and shellfish from the Buriganga, Turag, and Swat rivers have a high concentration of Cr. PTE pollution across several river sites could pose health toxicity risks to humans through the consumption of aquatic species. The CR value shows the carcinogenic risk to human health from eating fish and shellfish, whereas an HI value > 1 suggests no carcinogenic risk. The occurrence of other PTEs, including manganese (Mn), arsenic (As), and nickel (Ni), significantly increases the ecological risk and concerns to aquatic life and human health. This study emphasises the importance of PTE toxicity risk and continuous monitoring for the sustainability of river ecosystems.
Collapse
Affiliation(s)
- Md Muzammel Hossain
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.M.H.); (M.A.D.); (S.H.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Biodiversity Conservation and Fisheries Research Center, Dhaka 1207, Bangladesh;
| | - Iffat Jahan
- Biodiversity Conservation and Fisheries Research Center, Dhaka 1207, Bangladesh;
- Department of Chemistry, Mawlana Bhashani Science and Technology University, Santosh 1902, Bangladesh
| | - Mudasir A. Dar
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.M.H.); (M.A.D.); (S.H.)
| | - Maruti J. Dhanavade
- Department of Microbiology, Bharati Vidyapeeth’s Dr Patangrao Kadam Mahavidyalaya, Sangli 416416, India;
| | - Al Fattah Bin Mamtaz
- Institute of Agribusiness & Development Studies, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Stephen J. Maxwell
- College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia;
| | - Song Han
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.M.H.); (M.A.D.); (S.H.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.M.H.); (M.A.D.); (S.H.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
5
|
Shaalan WM. Hazardous effects of heavy metal pollution on Nile tilapia in the aquatic ecosystem of the Eastern Delta in Egypt. BMC Vet Res 2024; 20:585. [PMID: 39732725 DOI: 10.1186/s12917-024-04367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/05/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt. METHODS Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022. The concentrations of heavy metals in fish muscle tissues were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-OES). Histopathological examinations were performed on gill, liver, spleen, and muscle tissues, following standard histological procedures, to assess tissue damage and morphological alterations. Additionally, gene expression analysis was conducted using real-time polymerase chain reaction (RT-qPCR) to evaluate the expression levels of muscle growth (MyoD, IGF-1) and immune response (TNFa, IL6) genes. RESULTS Histopathological examinations revealed noteworthy alterations in tilapia gill, liver, spleen, and muscle, suggesting potential health risks. Gene expression analysis using Real-time polymerase chain reaction (RT-qPCR) indicated significant changes in genes related to muscle growth (MyoD, IGF-1) and immune response (TNFa, IL6) in fish from the Damietta branch relative to fish of El-Rayah El-Tawfeeky. CONCLUSION The findings raise concerns about bioaccumulation of heavy, some of which surpass international safety limits, posing potential health risks to consumers. The study underscores the significance of continuous monitoring, utilizing chemical, histopathological, and molecular tools as bioindicators for environmental protection measures against aquatic pollution.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Department of Zoology, Faculty of Science, Benha University, Benha, 13518, Egypt.
- Faculty of Biology and Biotechnology and Centre for Protein Diagnosis, Bioinformatics Group, Ruhr University Bochum, Bochum, 44801, Germany.
| |
Collapse
|
6
|
Yu YB, Lee JW, Jo AH, Choi YJ, Choi CY, Kang JC, Kim JH. Toxic Effects of Cadmium Exposure on Hematological and Plasma Biochemical Parameters in Fish: A Review. TOXICS 2024; 12:699. [PMID: 39453119 PMCID: PMC11510934 DOI: 10.3390/toxics12100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Cadmium (Cd) is a non-essential trace element that poses significant toxic effects on fish. This review focuses on hematological and plasma biochemical parameters as key indicators of fish health under Cd exposure. Hematological parameters, such as red blood cell (RBC) count, hemoglobin (Hb) concentration, and hematocrit (Ht), were selected for their critical role in oxygen transport and their sensitivity to Cd-induced disruptions, which often result in anemia and impaired oxygen delivery to tissues. Mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) provide further insights into erythropoiesis and hemoglobin synthesis, both of which are essential for assessing Cd toxicity. Plasma biochemical parameters, including calcium, magnesium, glucose, cholesterol, total protein, and liver enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP), are crucial for understanding ionic balance, metabolic regulation, and organ function, especially in fish exposed to Cd. These biomarkers offer a comprehensive view of the physiological stress and organ damage caused by Cd toxicity. This review synthesizes literature findings on the toxic effects of Cd on these parameters. It also discusses potential mitigation strategies, including dietary supplementation with antioxidants and trace elements, to counteract the harmful effects of Cd exposure.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Ju-Wook Lee
- Incheon Regional Office of National Fishery Products Quality Management Service, Incheon 22346, Republic of Korea
| | - A-Hyun Jo
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Jae Choi
- Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 312844, Republic of Korea
| | - Cheol Young Choi
- Division of Marine BioScience, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Republic of Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
7
|
Mandizha NT, Kugara J, Mombeshora ET, Zaranyika MF. Trace metal speciation trends in Mazowe dam, Zimbabwe, a typical sub-tropical dam ecosystem impacted by gold mining and agriculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:348. [PMID: 39073658 DOI: 10.1007/s10653-024-02117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
The present study aimed to assess trace metal speciation trends in the water and sediments of Mazowe Dam, a typical sub-tropical dam ecosystem impacted by gold mining and agriculture in Zimbabwe. The elements studied include Al, As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn. Elemental speciation in the water column was determined using Visual MINTEQ version 3.1 geochemical computer modelling, while speciation in the sediment phase was determined using sequential extraction techniques. For each element, the data obtained were subjected to extensive correlation analysis to identify intra- and inter-metal species interactions in the water column and the sediment phase, as well as across the water-sediment interface. Possible mechanisms to account for the observed species interactions are proposed. In the water column, Co was predicted to have the highest number of chemical species (9), Cd and Zn (8), Mn and Fe (7), Ni (6), Pb (5), Al and Cu (3), Cr, Hg, and As have the least (2). In the sediment, Al, As, Co, Cr, Cu, Fe, Ni and Fe mainly exist in the residual fraction, while Zn and Mn concentrations in fractions vary per sampling site, with no fraction that is dominant across the sampling sites. Equilibrium exchange reactions across the water-sediment interface were observed e.g., for Cd species /FA2Cd (aq) and Co species /FACo+2G (aq), and /FA2Co (aq). This study is valuable in highlighting trace metal speciation in a tropical dam ecosystem in Africa and adds to the growing knowledge about the behaviour of trace metals in aquatic ecosystems in the region and globally.
Collapse
Affiliation(s)
| | - Jameson Kugara
- Department of Chemistry and Earth Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Edwin T Mombeshora
- Department of Chemistry and Earth Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Mark Fungayi Zaranyika
- Department of Chemistry and Earth Sciences, University of Zimbabwe, Harare, Zimbabwe
- Tegwani Farm, Jumbo Road, Mazowe, Zimbabwe
| |
Collapse
|
8
|
Khalil MM, Aboueldahab SM, Abdel-Raheem KHM, Ahmed M, Ahmed MS, Abdelhady AA. Mixed agricultural, industrial, and domestic drainage water discharge poses a massive strain on freshwater ecosystems: a case from the Nile River in Upper Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122642-122662. [PMID: 37973780 DOI: 10.1007/s11356-023-30994-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Heavy metal and pesticide pollution of freshwater ecosystems, i.e., rivers, raises significant concerns worldwide, where practical solutions to reduce the threats become urgent need. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature; therefore, pesticides and heavy metals were measured at 10 stations along the Al-Zennar agricultural drain and the Nile River at Assiut city in Upper Egypt, to assess potential negative impact on the water/sediment's quality. The sediment of the streambed is a sink for pesticides and heavy metals, where both water and sediments have higher contamination factor (CF) for Cd, Pb, Cr, Cu, and Zn. In addition, the Nile water is highly contaminated by PCBs. The distance to the point source and hydrodynamics (flow rate and stream gradient) has major influences in pollutant concentrations as indicated by regression models. Dilution effect and rapid sedimentation may comment on the lower concentrations of the pollutants in the Nile comparatively to the drain and on the water comparatively to the sediments. The physiochemistry of the stations has minor effect on the metal/pesticide concentration, where the variable importance of projection (VIP) of the partial least square model indicated that total dissolved solids (TDS), total suspended solids (TSS), SO42-, and BOD/TOC/COD are the main contributors to the metal/pesticide concentration. Concentrations were not correlated between water and sediment suggesting a historical accumulation in sediments and temporal variation in the pollution load in the Al-Zennar drain. Bray-Curtis clustering confirmed that heavy metals have the same anthropogenic source in contrast to natural source of both Mn and Fe.
Collapse
Affiliation(s)
- Mahmoud M Khalil
- Geology Department, Faculty of Science, Minia University, Al-Minya, 61519, Egypt.
| | - Sherif M Aboueldahab
- Environmental Quality Management, Egyptian Environmental Affairs Agency (EEAA), Assiut, Egypt
| | | | - Mohamed Ahmed
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX, 78412, USA
| | - Mohamed S Ahmed
- Geology and Geophysics Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed A Abdelhady
- Geology Department, Faculty of Science, Minia University, Al-Minya, 61519, Egypt
| |
Collapse
|
9
|
Liao J, Wang T, Gui J, Zhang H, Huang C, Song X, Zhang S. Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China. TOXICS 2023; 11:825. [PMID: 37888676 PMCID: PMC10610615 DOI: 10.3390/toxics11100825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Shiyang River Watershed is an important ecological barrier and agricultural production area in Northwest China, and the study of soil heavy metal content, distribution, and sources is important for agricultural product safety, pollution control, and ecosystem health. In this paper, 140 soil samples were collected from 28 stations to assess the level of heavy metal (Arsenic (As), Copper (Cu), Lead (Pb), Cadmium (Cd), Chromium (Cr), Mercury (Hg), Nickel (Ni), Zinc (Zn)) contamination, pollutant sources and influencing factors of soil in Shiyang River Watershed through determination of the metal contents and statistical analysis. The results indicated that the soils in the study area are typical saline soils in arid zones. The enrichment factors (EF) of As, Cr, Cu, Ni, Zn, and Pb indicate no contamination, and the EFs of Cd and Hg suggested minor contamination. Although the concentrations of Cd and Hg in soil are lower than others, they are more biotoxic and exhibit a moderate-high ecological risk. The index of geoaccumulation (Igeo) values reflect that most of the stations, especially the three groups of samples from depths of 10-20 cm, 20-40 cm, and 40-80 cm, are below the contamination threshold for all heavy metals. The chemical speciation of heavy metals, principal component analysis, and correlation analysis showed that Cr, Cu, Pb, Cd, Ni, and Zn mainly come from the natural accumulation upon weathering of soil-forming matrices. Hg and As mainly come from anthropogenic contributions. The effect of agricultural crop cultivation on soil heavy metal contamination is mainly through farm irrigation and crop-soil interactions, which accelerate the release of heavy metals through the weathering of soil-forming parent material and irrigation, which transports the heavy metals below the surface. The results of this study can provide a scientific basis for the involved authorities to formulate reasonable policies on environmental protection and pollution control.
Collapse
Affiliation(s)
- Jie Liao
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (T.W.); (C.H.); (X.S.); (S.Z.)
- Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China
| | - Tao Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (T.W.); (C.H.); (X.S.); (S.Z.)
- Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China
| | - Jianhua Gui
- Gulang County Agricultural and Rural Bureau, Wuwei 733199, China;
| | - Hengping Zhang
- Gansu Qilian Mountain National Nature Reserve Management and Protection Center Haxi Nature Reserve Station, Wuwei 733200, China
| | - Cuihua Huang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (T.W.); (C.H.); (X.S.); (S.Z.)
- Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China
| | - Xiang Song
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (T.W.); (C.H.); (X.S.); (S.Z.)
- Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China
| | - Shengyin Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (T.W.); (C.H.); (X.S.); (S.Z.)
- Gansu Salinization Field Observation and Research Station, Lanzhou 730000, China
| |
Collapse
|
10
|
Abdel-Tawwab M, Khalil RH, Abo Selema TAM, Elsamanooudy SI, El-Werwary SOM, Shady SHH, Monier MN, Ismaiel MMS. Dietary Chlorella vulgaris effectively alleviates oxidative stress, immunosuppression, and enhances the resistance to Streptococcus agalactiae infection in cadmium-intoxicated Nile tilapia fingerlings. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108717. [PMID: 37004894 DOI: 10.1016/j.fsi.2023.108717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Aquatic pollutants, including cadmium (Cd), cause oxidative stress on aquatic animals. The use of probiotics, including microalgae as a feed additive to alleviate the toxic impacts of heavy metals, is a much more interesting point. Hence, the current study investigated the oxidative stress and immunosuppression in Nile tilapia (Oreochromis niloticus) fingerlings caused by Cd toxicity as well as the preventive function of dietary Chlorella vulgaris against Cd toxicity. Accordingly, fish were fed on 0.0 (control), 5, and 15 g/kg diet of Chlorella up to satiation thrice a day, along with being exposed to 0.0 or 2.5 mg Cd/L for 60 days. Following the experimental procedure, fish from each group were intraperitoneally injected with Streptococcus agalactiae, and their survivability was observed for further ten days. Chlorella-supplemented diets meaningfully (P < 0.05) boosted the antioxidative capability of fish, which was evidenced by higher activities of hepatic superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) as well as higher levels of reduced glutathione (GSH) along with significant reductions in hepatic malondialdehyde levels. Moreover, the innate immunity indices [phagocytic activity (PA), respiratory burst activity (RBA), and alternative complement activity (ACH50)] were significantly higher in Chlorella-fed fish, particularly in the group of 15 g/kg diet. Additionally, serum of Chlorella-fed fish showed potent bactericidal activities against S. agalactiae, particularly at the treatment of a 15 g/kg diet. Feeding Chlorella diets to Nile tilapia fingerlings upregulated SOD, CAT, and GPx genes expression alongside the down-regulation of IL-1β, IL-8, IL-10, TNF-α, and HSP70 genes expression. Conversely, Cd toxicity caused oxidative stress and suppressed the fish's innate immunity with upregulation of the expression of IL-1β, IL-8, IL-10, TNF-α, and HSP70 genes. Feeding Cd-exposed fish on Chlorella-containing diets attenuated these adverse effects. The current research revealed that supplementing feeds with the treatment of 15 g/kg diet of C. vulgaris supports the antioxidant-immune responses and alleviates the Cd toxicity effects on Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Talal A M Abo Selema
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Salma I Elsamanooudy
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt.
| | - Suzan O M El-Werwary
- Department of Fish Hatching and Physiology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Sherien H H Shady
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Mohamed N Monier
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, 44662, Egypt.
| | - Mostafa M S Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt.
| |
Collapse
|
11
|
Sadia M, Khan J, Khan R, Kamran AW, Zahoor M, Ullah R, Bari A, Ali EA. Rapid Detection of Cd 2+ Ions in the Aqueous Medium Using a Highly Sensitive and Selective Turn-On Fluorescent Chemosensor. Molecules 2023; 28:molecules28083635. [PMID: 37110866 PMCID: PMC10143290 DOI: 10.3390/molecules28083635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Herein, a novel optical chemosensor, (CM1 = 2, 6-di((E)-benzylidene)-4-methylcyclohexan-1-one), was designed/synthesized and characterized by 1H-NMR and FT-IR spectroscopy. The experimental observations indicated that CM1 is an efficient and selective chemosensor towards Cd2+, even in the presence of other metal ions, such as Mn2+, Cu2+, Co2+, Ce3+, K+, Hg2+,, and Zn2+ in the aqueous medium. The newly synthesized chemosensor, CM1, showed a significant change in the fluorescence emission spectrum upon coordination with Cd2+. The formation of the Cd2+ complex with CM1 was confirmed from the fluorometric response. The 1:2 combination of Cd2+ with CM1 was found optimum for the desired optical properties, which was confirmed through fluorescent titration, Job's plot, and DFT calculation. Moreover, CM1 showed high sensitivity towards Cd2+ with a very low detection limit (19.25 nM). Additionally, the CM1 was recovered and recycled by the addition of EDTA solution that combines with Cd2+ ion and, hence, frees up the chemosensor.
Collapse
Affiliation(s)
- Maria Sadia
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Jehangir Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Rizwan Khan
- Department of Electrical Engineering, Kwangwoon University Seoul, Seoul 01897, Republic of Korea
| | | | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
12
|
Sakan S, Mihajlidi-Zelić A, Ašković K, Sakan N, Trifunović S, Đorđević D. The significance of applying different factors for the evaluation of sediment contamination by toxic elements and estimation of the ecological risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53461-53477. [PMID: 36854944 DOI: 10.1007/s11356-023-26111-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The optimized three-step sequential extraction procedure for the fractionation of micro- and macroelements, was conducted to determine fractional characteristics of PTEs (potentially toxic elements) in surface sediments of rivers in the Vlasina watershed. The sequential extraction results, which enable the evaluation of mobility of the studied elements, have indicated that Zn, Ni, Cu, Cr, and As can be considered slightly mobile, whereas Pb, Mn, Cd, and Co were regarded as possibly mobile elements. Lead was dominantly bounded (specifically adsorbed or co-precipitated) to iron and manganese oxides (up to 80%) and may be released by reduction. Since the content of the exchangeable fraction (F1) is an indicator for anthropogenic impact on the aquatic environment, a low percentage (0-8%) of studied toxic elements in this fraction indicated that these elements have lithogenic origin in most sampling locations in the area of study. Except for Pb, the substantial positive correlations between Al and other elements showed that studied elements came primarily from terrigenous sources. Although the values obtained for the risk assessment code (RAC) indicated a slightly increased mobility of some elements (up to 22.44%), the values of the modified risk assessment code (mRAC), which include toxic effects on the environment, showed there is no danger of pollution by studied elements (all values were < 1%). Our recommendation is to use mRAC instead of RAC in ecochemical studies and assessment of the degree of sediment and soil pollution, because mRAC includes toxic effects of elements. Based on ATI values, river sediments show no toxic to a low toxic degree. Even though obtained results indicate that there was no considerable risk for river water contamination, the ecological risk for Fe and Pb should be monitored in the future.
Collapse
Affiliation(s)
- Sanja Sakan
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia.
| | - Aleksandra Mihajlidi-Zelić
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia
| | - Ksenija Ašković
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Nenad Sakan
- Institute of Physics, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11000, Belgrade, Serbia
| | - Snežana Trifunović
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Đorđević
- Centre of Excellence in Environmental Chemistry and Engineering - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11158, Belgrade, Serbia
| |
Collapse
|
13
|
Detection of Cd2+ in Aqueous Solution by the Fluorescent Probe of CdSe/CdS QDs Based on OFF–ON Mode. TOXICS 2022; 10:toxics10070367. [PMID: 35878272 PMCID: PMC9319136 DOI: 10.3390/toxics10070367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022]
Abstract
The detection of heavy metals in aqueous solutions has always attracted much attention from all over the world. A fluorescent probe of CdSe/CdS core-shell quantum dots (QDs) was designed to detect trace Cd2+ in aqueous solutions using the OFF–ON mode rapidly and efficiently, likely based on adsorption and desorption reactions between ethylenediaminetetraacetic acid disodium salt (EDTA) and CdSe/CdS QDs. In the OFF mode, the optical shielding function of EDTA results in fluorescence quenching owing to the strong adsorption ability of EDTA with Cd2+ on the sites of CdSe/CdS QDs surface. In the ON mode, the introduction of Cd2+ promotes the desorption of EDTA from the EDTA-CdSe/CdS QDs and restores the fluorescence intensity. There were two linear response ranges which were 0.1–20 µmol/L and 20–90 µmol/L for the EDTA-CdSe/CdS system to detect Cd2+. The detection limit was 6 nmol/L, and the standard deviation was below 4% for the detection of Cd2+ concentration in tap water.
Collapse
|