1
|
Pacyga DC, Jolly L, Whalen J, Calafat AM, Braun JM, Schantz SL, Strakovsky RS. Exploring diet as a source of plasticizers in pregnancy and implications for maternal second-trimester metabolic health. ENVIRONMENTAL RESEARCH 2024; 263:120198. [PMID: 39427938 DOI: 10.1016/j.envres.2024.120198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AND OBJECTIVES Diet plays critical roles in modulating maternal metabolic health in pregnancy, but is also a source of metabolic-disrupting phthalates and their replacements. We aimed to evaluate whether the effects of better diet quality on favorable maternal metabolic outcomes could be partially explained by lower exposure to phthalates/replacements. METHODS At 13 weeks gestation, 295 Illinois women (enrolled 2015-2018) completed a three-month food frequency questionnaire that we used to calculate the Alternative Healthy Eating Index (AHEI)-2010 to assess diet quality. We quantified 19 metabolites, reflecting exposure to 10 phthalates/replacements, in a pool of five first-morning urine samples collected monthly across pregnancy. We measured 15 metabolic biomarkers in fasting plasma samples collected at 17 weeks gestation, which we reduced to five uncorrelated principal components (PCs), representing adiposity, lipids, cholesterol, inflammation, and growth. We used linear regression to estimate associations of diet quality with [1] phthalates/replacements and [2] metabolic PCs, as well as [3] associations of phthalates/replacements with metabolic PCs. We estimated the proportion of associations between diet quality and metabolic outcomes explained by phthalates/replacements using a causal mediation framework. RESULTS Overall, every 10-point improvement in AHEI-2010 score was associated with -0.15 (95% CI: -0.27, -0.04) lower adiposity scores, reflecting lower glucose, insulin, C-peptide, leptin, C-reactive protein, but higher adiponectin biomarker levels. Every 10-point increase in diet quality was also associated with 18% (95%CI: 7%, 28%) lower sum of di-2-ethylhexyl terephthalate urinary metabolites (∑DEHTP). Correspondingly, each 18% increase in ∑DEHTP was associated with 0.03 point (95% CI: 0.01, 0.05) higher adiposity PC scores. In mediation analyses, 21% of the inverse relationship between diet quality and adiposity PC scores was explained by lower ∑DEHTP. CONCLUSIONS The favorable impact of diet quality on maternal adiposity biomarkers may be partially attributed to lower metabolite concentrations of DEHTP, a plasticizer allowed to be used in food packaging materials.
Collapse
Affiliation(s)
- Diana C Pacyga
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Luca Jolly
- Lyman Briggs College, Michigan State University, East Lansing, MI, USA; Honors College, Michigan State University, East Lansing, MI, USA
| | - Jason Whalen
- Michigan Diabetes Research Center Chemistry Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Susan L Schantz
- The Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA; Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Shen X, Génard-Walton M, Williams PL, James-Todd T, Ford JB, Rexrode KM, Calafat AM, Zhang D, Chavarro JE, Hauser R, Mínguez-Alarcón L. Mixtures of Urinary Phenol and Phthalate Metabolite Concentrations in Relation to Serum Lipid Levels among Pregnant Women: Results from the EARTH Study. TOXICS 2024; 12:574. [PMID: 39195676 PMCID: PMC11359712 DOI: 10.3390/toxics12080574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
We examined whether mixtures of urinary concentrations of bisphenol A (BPA), parabens and phthalate metabolites were associated with serum lipid levels among 175 pregnant women who enrolled in the Environment and Reproductive Health (EARTH) Study (2005-2017), including triglycerides, total cholesterol, high-density lipoprotein (HDL), non-HDL, and low-density lipoprotein (LDL). We applied Bayesian Kernel Machine Regression (BKMR) and quantile g-computation while adjusting for confounders. In the BKMR models, we found no associations between chemical mixture and lipid levels, e.g., total cholesterol [mean difference (95% CRI, credible interval) = 0.02 (-0.31, 0.34)] and LDL [mean difference (95% CRI) = 0.10 (-0.22, 0.43)], when comparing concentrations at the 75th to the 25th percentile. When stratified by BMI, we found suggestive positive relationships between urinary propylparaben and total cholesterol and LDL among women with high BMI [mean difference (95% CRI) = 0.25 (-0.26, 0.75) and 0.35 (-0.25, 0.95)], but not with low BMI [mean difference (95% CRI) = 0.00 (-0.06, 0.07) and 0.00 (-0.07, 0.07)]. No association was found by quantile g-computation. This exploratory study suggests mixtures of phenol and phthalate metabolites were not associated with serum lipid levels during pregnancy, while there were some suggestive associations for certain BMI subgroups. Larger longitudinal studies with multiple assessments of both exposure and outcome are needed to corroborate these novel findings.
Collapse
Affiliation(s)
- Xilin Shen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (X.S.); (D.Z.)
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Maximilien Génard-Walton
- Université Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France;
| | - Paige L. Williams
- Department of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Tamarra James-Todd
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (T.J.-T.); (R.H.)
| | - Jennifer B. Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Kathryn M. Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Antonia M. Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA;
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; (X.S.); (D.Z.)
- Clinical Research Center on Children’s Health of Zhejiang Province, Hangzhou 310006, China
| | - Jorge E. Chavarro
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Channing Division of Network Medicine, Harvard Medical School & Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Russ Hauser
- Department of Epidemiology and Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (T.J.-T.); (R.H.)
- Department of Obstetrics, Gynaecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | | |
Collapse
|
3
|
Moawad AM, Awady S, Ali AAER, Abdelgwad M, Belal S, Taha SHN, Mohamed MI, Hassan FM. Phthalate Exposure and Coronary Heart Disease: Possible Implications of Oxidative Stress and Altered miRNA Expression. Chem Res Toxicol 2024; 37:723-730. [PMID: 38636967 DOI: 10.1021/acs.chemrestox.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The relationship between phthalate exposure and coronary heart disease (CHD) is still unclear. This study aimed to investigate the association between phthalate exposure and CHD and determine the possible atherogenic mechanisms of phthalates by assessing oxidative stress and altering miRNA expression. This case-control study included 110 participants (55 CHD patients and 55 healthy controls). The levels of oxidative stress markers, malondialdehyde (MDA), and superoxide dismutase (SOD), and the expression of miRNA-155 (miR-155) and miRNA-208a (miR-208a), were measured and correlated with the urinary mono-2-ethylhexyl phthalate (MEHP). Highly significant differences were detected between the CHD cases and the control group regarding MEHP, MDA, SOD, miR-155, and miR-208a (p-value < 0.001). Spearman correlations revealed a significant positive correlation between MDA and MEHP in urine (P = 0.001 and rs = 0.316) and a significant negative correlation between SOD and MEHP in urine (P < 0.001 and rs = -0.345). Furthermore, significant positive correlations were observed between miR-155 and urinary MEHP (P = 0.001 and rs = 0.318) and miR-208a and urinary MEHP (P < 0.001 and rs = -0.352). This study revealed an association between phthalate exposure, as indicated by urinary MEHP and CHD; altered expression of miR-155 and miR-208a and oxidative stress could be the fundamental mechanisms.
Collapse
Affiliation(s)
- Asmaa Mohammad Moawad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sara Awady
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Abla Abd El Rahman Ali
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Abdelgwad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Soliman Belal
- Department of Critical Care, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Sarah Hamed N Taha
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Marwa Issak Mohamed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| | - Fatma Mohamed Hassan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Cairo University, Kasr Alainy Street, Cairo 11562, Egypt
| |
Collapse
|
4
|
Preston EV, Quinn MR, Williams PL, McElrath TF, Cantonwine DE, Seely EW, Wylie BJ, Hacker MR, O'Brien K, Brown FM, Powe CE, Bellavia A, Wang Z, Tomsho KS, Hauser R, James-Todd T. Cohort profile: the Environmental Reproductive and Glucose Outcomes (ERGO) Study (Boston, Massachusetts, USA) - a prospective pregnancy cohort study of the impacts of environmental exposures on parental cardiometabolic health. BMJ Open 2024; 14:e079782. [PMID: 38719310 PMCID: PMC11086466 DOI: 10.1136/bmjopen-2023-079782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE Pregnancy and the postpartum period are increasingly recognised as sensitive windows for cardiometabolic disease risk. Growing evidence suggests environmental exposures, including endocrine-disrupting chemicals (EDCs), are associated with an increased risk of pregnancy complications that are associated with long-term cardiometabolic risk. However, the impact of perinatal EDC exposure on subsequent cardiometabolic risk post-pregnancy is less understood. The Environmental Reproductive and Glucose Outcomes (ERGO) Study was established to investigate the associations of environmental exposures during the perinatal period with post-pregnancy parental cardiometabolic health. PARTICIPANTS Pregnant individuals aged ≥18 years without pre-existing diabetes were recruited at <15 weeks of gestation from Boston, Massachusetts area hospitals. Participants completed ≤4 prenatal study visits (median: 12, 19, 26, 36 weeks of gestation) and 1 postpartum visit (median: 9 weeks), during which we collected biospecimens, health histories, demographic and behavioural data, and vitals and anthropometric measurements. Participants completed a postpartum fasting 2-hour 75 g oral glucose tolerance test. Clinical data were abstracted from electronic medical records. Ongoing (as of 2024) extended post-pregnancy follow-up visits occur annually following similar data collection protocols. FINDINGS TO DATE We enrolled 653 unique pregnancies and retained 633 through delivery. Participants had a mean age of 33 years, 10% (n=61) developed gestational diabetes and 8% (n=50) developed pre-eclampsia. Participant pregnancy and postpartum urinary phthalate metabolite concentrations and postpartum glycaemic biomarkers were quantified. To date, studies within ERGO found higher exposure to phthalates and phthalate mixtures, and separately, higher exposure to radioactive ambient particulate matter, were associated with adverse gestational glycaemic outcomes. Additionally, certain personal care products used in pregnancy, notably hair oils, were associated with higher urinary phthalate metabolite concentrations, earlier gestational age at delivery and lower birth weight. FUTURE PLANS Future work will leverage the longitudinal data collected on pregnancy and cardiometabolic outcomes, environmental exposures, questionnaires, banked biospecimens and paediatric data within the ERGO Study.
Collapse
Affiliation(s)
- Emma V Preston
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marlee R Quinn
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Thomas F McElrath
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Division of Maternal Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E Cantonwine
- Division of Maternal Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen W Seely
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Columbia University Vagelos College of Physicians and Surgeons, New York City, New York, USA
| | - Michele R Hacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Karen O'Brien
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Florence M Brown
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Camille E Powe
- Diabetes Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrea Bellavia
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kathryn S Tomsho
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhu X, Cheang I, Chen Z, Shi M, Zhu Q, Yue X, Tang Y, Pang H, Liao S, Zhou Y, Li X. Associations of urinary di(2-ethylhexyl) phthalate metabolites with lipid profiles among US general adult population. Heliyon 2023; 9:e20343. [PMID: 37800061 PMCID: PMC10550567 DOI: 10.1016/j.heliyon.2023.e20343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Background Di(2-ethylhexyl) phthalate (DEHP) a parent compound that is metabolized into 4 phthalate metabolites, which correlate to adverse cardio-metabolic risk factors. This study aimed to explore the links between urinary DEHP metabolites and serum lipids in the U.S. general adult population. Methods In this cross-sectional study, data on 11 urinary phthalate metabolites from the 2005-2018 National Health and Nutrition Examination Surveys (NHANES) were analyzed. Multivariate linear regression and restricted cubic spline (RCS) were used to examine the relationship between phthalate metabolites [specific DEHPs: mono-(2-ethyl-5-carboxy-pentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxy-hexyl) phthalate (MEHHP), mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-oxo-hexyl) phthalate (MEOHP)] and serum lipids (triglycerides [TG], total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], and high-density lipoprotein cholesterol [HDL-C]). To identify mixed exposure effects of phthalate metabolites, quantile g-computation (QG-C) and weighted quantile sum (WQS) regression were employed for the lipid profiles. Results A total of 9141 adults were included in the analysis. MECPP, MEHHP, MEHP, and MEOHP in the highest quartile had a negative relationship with HDL-C compared to the lowest quartile (All P for trend <0.05). TG showed a significant positive relation with MECPP, MEHHP, and MEOHP (All P for trend <0.05), but there was no notable association with MEHP. RCS demonstrated a linear relationship of DEHP metabolites with HDL-C, TC, TG, and LDL-C (all P for nonlinearity >0.05). The WQS index of DEHP metabolites showed independent correlations with HDL-C [β = -0.26, 95%CI (-0.43, -0.09), P = 0.002], TC [β = 0.55, 95%CI (0.13, 0.98), P = 0.011], and TG [β = 2.40, 95%CI (0.85, 3.96), P = 0.003]. Conclusion Our study suggests that environmental DEHP exposure may affect serum HDL-C and TG levels in the general adult population. Further research is warranted to confirm these findings and illuminate the underlying mechanisms of DEHP exposure on lipids.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Iokfai Cheang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Ziqi Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Mengsha Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xin Yue
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yuan Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Hui Pang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China
| |
Collapse
|
6
|
Aydemir D, Aydogan-Ahbab M, Barlas N, Ulusu NN. Effects of the in-utero dicyclohexyl phthalate and di- n-hexyl phthalate administration on the oxidative stress-induced histopathological changes in the rat liver tissue correlated with serum biochemistry and hematological parameters. Front Endocrinol (Lausanne) 2023; 14:1128202. [PMID: 37274322 PMCID: PMC10235726 DOI: 10.3389/fendo.2023.1128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Phthalates are widely used as plasticizers in the industry and are found in cosmetics, food and drink packaging, drugs, toys, households, medical devices, pesticides, personal care products, and paints. Phthalates exert endocrine disrupting and peroxisome proliferator effects in humans and wildlife associated with the pathogenesis of various diseases, including diabetes, obesity, infertility, cardiovascular diseases, metabolic syndrome, and cancer. Since phthalates are metabolized in the liver, which regulates the body's energy metabolism, long or short-term exposure to the phthalates is associated with impaired glucose, lipid, and oxidative stress metabolisms contributing to liver toxicity. However, the impact of in-utero exposure to DHP and DCHP on liver metabolism has not been studied previously. Thus, in this study, we evaluated serum biochemistry parameters, hematological markers, histopathological changes, and oxidative and pentose phosphate pathway (PPP) metabolisms in the liver following in-utero DHP and DCHP administration, respectively, in male and female rats. We found increased relative and absolute liver weights and impaired triglyceride, alanine transaminase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) levels upon dicyclohexyl phthalate (DCHP) and di-n-hexyl phthalate (DHP). Histopathological changes, including congestion, sinusoidal dilatation, inflammatory cell infiltration, cells with a pyknotic nucleus, lysis of hepatocytes, and degeneration of hepatic parenchyma have been observed in the liver samples of DHP and DCHP dose groups. Moreover, increased glutathione s-transferase (GST), glucose 6-phosphate dehydrogenase (G6PD), and glutathione reductase (GR) activities have been found in the liver samples of DHP and DCHP-treated rats associated with impaired pentose phosphate pathway (PPP) and oxidative stress metabolism. First time in the literature, we showed that in-utero exposure to DHP and DCHP causes liver damage associated with impaired oxidative stress metabolism in male and female rats. Our data may guide researchers and governments to regulate and restrict phthalates in industrial products.
Collapse
Affiliation(s)
- Duygu Aydemir
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| | - Mufide Aydogan-Ahbab
- University of Health Sciences Turkey, Hamidiye Vocational School of Health Services, Istanbul, Türkiye
| | - Nurhayat Barlas
- Science Faculty, Department of Biology, Hacettepe University, Ankara, Türkiye
| | - Nuriye Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
7
|
Li W, Guo L, Fang J, Zhao L, Song S, Fang T, Li C, Wang L, Li P. Phthalates and phthalate metabolites in urine from Tianjin and implications for platelet mitochondrial DNA methylation. Front Public Health 2023; 11:1108555. [PMID: 37181721 PMCID: PMC10169620 DOI: 10.3389/fpubh.2023.1108555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Phthalates (PAEs) are important synthetic substances in plastics, attracting much attention due to their potential effects on the cardiovascular system. Methods In this study, urine and blood samples from 39 individuals were collected in Tianjin, China. Phthalates and phthalate metabolites (mPAEs) were analyzed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography-mass spectrometry (HPLC-MS), respectively. The polymerase chain reaction (PCR) products from bisulfite-treated mitochondrial DNA (mtDNA) samples were analyzed using pyrosequencing technology. Results The detection frequencies for 9 PAEs varied from 2.56 to 92.31%, and those for 10 mPAEs varied from 30.77 to 100%. The estimated daily intakes (EDIs) and cumulative risk of PAEs were calculated based on the experimental statistics of urinary PAEs and mPAEs. For PAEs, the HIRfD (hazard index corresponding to reference doses) values of 10.26% of participants and the HITDI (hazard index corresponding to tolerable daily intake) values of 30.77% of participants were estimated to exceed 1, suggesting a relatively high exposure risk. The mtDNA methylation levels in the MT-ATP8 and MT-ND5 were observed to be lower than in the MT-ATP6. Mono-ethyl phthalate (MEP) and MT-ATP8 were positively correlated with triglyceride levels (p < 0.05). Based on the association of PAEs, mtDNA methylation, and triglycerides, the mediating role of mtDNA methylation between PAEs and cardiovascular diseases (CVDs) was analyzed in this study, but no mediated effect was observed. Conclusion The effects of PAE exposure on cardiovascular diseases (CVDs) should be investigated further.
Collapse
Affiliation(s)
- Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| | - Liqiong Guo
- Tianjin Fourth Central Hospital, Tianjin, China
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Junkai Fang
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | | | - Tao Fang
- Tianjin Fourth Central Hospital, Tianjin, China
| | - Chenguang Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| | - Lei Wang
- Hebei Research Center for Geoanalysis, Baoding, Hebei, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Fourth Central Hospital, Tianjin, China
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, China
| |
Collapse
|
8
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|
9
|
Fang Y, Chen Z, Chen J, Zhou M, Chen Y, Cao R, Liu C, Zhao K, Wang M, Zhang H. Dose-response mapping of MEHP exposure with metabolic changes of trophoblast cell and determination of sensitive markers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158924. [PMID: 36152845 DOI: 10.1016/j.scitotenv.2022.158924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Mono(2-ethylhexyl) phthalate (MEHP) is a metabolite of DEHP which is one of phthalic acid esters (PAEs) widely used in daily necessities. Moreover, MEHP has been proven to have stronger biological toxicity comparing to DEHP. In particular, several recent population-based studies have reported that intrauterine exposure to MEHP results in adverse pregnancy outcomes. To explore the mechanisms and metabolic biomarkers of MEHP exposure, we examined the metabolic status of HTR-8/Svneo cell lines exposed to different doses of MEHP (0, 1.25, 5.0, 20 μM). Global and dose-response metabolomics tools were used to identify metabolic perturbations and sensitive markers associated with MEHP. Only 22 metabolic features (accounted for <1 %) were significantly changed when exposed to 1.25 μM. However, when the exposure dose was increased to 5 or 20 μM, the number of significantly changed metabolic features exceeded 300 (approximately 10 %). In particular, amino acid metabolism, pyrimidine metabolism and glutathione metabolism were widely affected according to the enrich analysis of those significant altered metabolites, which has and have previously been reported to be closely related to fetal development. Moreover, 5'-UMP and N-acetylputrescine with the lowest effective concentrations (EC-10 = 0.1 μM and EC+10 = 0.11 μM, respectively) were identified as sensitive endogenous biomarkers of MEHP exposure.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhiliang Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan 430015, PR China
| | - Jinyu Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Minqi Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Rong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Min Wang
- Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan 430015, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|