1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Shang Y, Chen K, Ni H, Zhu X, Yuan X, Wang Y, Liu X, Cui Z, Niu Y, Shi Y, Wu H, Xia D, Wu Y. Environmentally relevant concentrations of perfluorobutane sulfonate impair locomotion behaviors and healthspan by downregulating mitophagy in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135938. [PMID: 39326150 DOI: 10.1016/j.jhazmat.2024.135938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Perfluorobutane sulfonate (PFBS), a chemical compound within the group of per- and polyfluoroalkyl substances (PFAS), has been utilized as an alternative to perfluorooctane sulfonate (PFOS) recently. Previous research has indicated that PFBS might be linked to a range of health concerns. However, the potential impacts of environmentally relevant concentrations of PFBS (25 nM) on aging as well as the underlying mechanisms remained largely unexplored. In this study, we investigated the impact of PFBS exposure on aging and the associated mechanisms in Caenorhabditis elegans. Our findings indicated that exposure to PFBS impaired healthspan of C. elegans. Through bioinformatic screening analyses, we identified that the dysfunctions of pink-1 mediated mitophagy might play a critical role in PFBS induced aging. The results furtherly revealed that PFBS exposure led to elevated levels of reactive oxygen species (ROS) and mitophagy impairment through downregulating pink-1/pdr-1 pathway. Furthermore, the mitophagy agonist Urolithin A (UA) effectively reversed PFBS-induced mitophagy dysfunction and enhanced healthspan in C. elegans. Taken together, our study suggested that exposure to environmentally relevant concentrations of PFBS could accelerate aging by downregulating the pink-1 mediated mitophagy. Promoting mitophagy within cells could be a promising therapeutic strategy for delaying PFBS-induced aging.
Collapse
Affiliation(s)
- Yahui Shang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Zhu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Wu
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Sun B, Hu C, Li J, Yang Z, Chen L. Interaction between young fecal transplantation and perfluorobutanesulfonate endocrine disrupting toxicity in aged recipients: An estrobolome perspective. ENVIRONMENT INTERNATIONAL 2024; 193:109133. [PMID: 39515036 DOI: 10.1016/j.envint.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Transplanting young feces into the aged was found to effectively counteract the endocrine disrupting effects of perfluorobutanesulfonate (PFBS) pollutant, showing promise in the maintenance of healthy aging. However, the interactive mechanisms between young fecal transplantation and PFBS endocrine disruption during aging remain unclear. In this follow-up study, aged zebrafish were administered young donor feces and then exposed to environmentally relevant concentrations of PFBS (0 and 100 μg/L). Alterations in the holistic estrobolome along gut-liver axis were investigated. The results showed that PFBS singular exposure significantly increased blood estradiol concentration in the aged, inducing an estrogenic activity. Concentrations of other estrogen forms, including estrone and estriol, were also disrupted by PFBS. Interestingly, young fecal transplant effectively mitigated the estrogenic toxicity of PFBS and largely restored estrogen equilibrium. After PFBS exposure, the transcriptions of estrogen metabolic genes were consistently upregulated in aged livers, causing the accumulation of 2-methoxyestradiol-3-methylether metabolite. In contrast, aged livers coexposed to young fecal transplant and PFBS enhanced the glucuronidation process, successfully facilitating the elimination and detoxification of estrogen metabolites. In aged gut, PFBS exposure inhibited β-glucuronidase enzyme activity, implying the suppression of estrogen deconjugation and recycle. However, in the combined group, β-glucuronidase activity was significantly stimulated, thus reestablishing estrobolome dynamics. Overall, current findings provide mechanistic insights into the antagonistic interaction between young fecal transplant and PFBS on reproductive endocrinology. Gut microbiota manipulation appears appealing to maintain healthy aging progression albeit the interruption of environmental xenobiotics.
Collapse
Affiliation(s)
- Baili Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixie Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|