1
|
Wen J, Li A, Wang Z, Guo X, Zhang G, Litzow MR, Liu Q. Hepatotoxicity induced by arsenic trioxide: clinical features, mechanisms, preventive and potential therapeutic strategies. Front Pharmacol 2025; 16:1536388. [PMID: 40051569 PMCID: PMC11882591 DOI: 10.3389/fphar.2025.1536388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Arsenic trioxide (ATO) has shown substantial efficacy in the treatment of patients with acute promyelocytic leukemia, and the utilization of ATO as a potential treatment for other tumors is currently being investigated; thus, its clinical application is becoming more widespread. However, the toxicity of ATO has prevented many patients from receiving this highly beneficial treatment. The clinical features, mechanisms, and preventive measures for ATO hepatotoxicity, as well as potential curative strategies, are discussed in this review. This review not only discusses existing drugs for the treatment of hepatotoxicity but also focuses on potential future therapeutic agents, providing forward-looking guidance for the clinical use of small molecule extracts, trace elements, antidiabetic drugs, and vitamins.
Collapse
Affiliation(s)
- Jun Wen
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Aiwen Li
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Ziliang Wang
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Guo
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Gaoling Zhang
- Center of Hematology, Peking University People’s Hospital Qingdao, Qingdao, China
| | - Mark R. Litzow
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Qiuju Liu
- Department of Haematology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Subramaniam NK, Mann KK. Mechanisms of Metal-Induced Hepatic Inflammation. Curr Environ Health Rep 2024; 11:547-556. [PMID: 39499483 DOI: 10.1007/s40572-024-00463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Worldwide, there is an increasing prevalence of hepatic diseases. The most common diseases include alcoholic-associated liver disease (ALD), metabolic dysfunction-associated fatty liver disease/ metabolic dysfunction-associated steatohepatitis (MAFLD/MASH) and viral hepatitis. While there are many important mediators of these diseases, there is increasing recognition of the importance of the inflammatory immune response in hepatic disease pathogenesis. RECENT FINDINGS Hepatic inflammation triggers the onset and progression of liver diseases. Chronic and sustained inflammation can lead to fibrosis, then cirrhosis and eventually end-stage cancer, hepatocellular carcinoma. Importantly, growing evidence suggest that metal exposure plays a role in hepatic disease pathogenesis. While in recent years, studies have linked metal exposure and hepatic steatosis, studies emphasizing metal-induced hepatic inflammation are limited. Hepatic inflammation is an important hallmark of fatty liver disease. This review aims to summarize the mechanisms of arsenic (As), cadmium (Cd) and chromium (Cr)-induced hepatic inflammation as they contribute to hepatic toxicity and to identify data gaps for future investigation.
Collapse
Affiliation(s)
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste Catherine Rd. Rm 202.1, Montréal, Québec, H3T 1E2, Canada.
| |
Collapse
|
3
|
Erdem I, Aktas S, Ogut S. Neohesperidin Dihydrochalcone Ameliorates Experimental Colitis via Anti-Inflammatory, Antioxidative, and Antiapoptosis Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15715-15724. [PMID: 38961631 DOI: 10.1021/acs.jafc.4c02731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Neohesperidin dihydrochalcone (NHDC) is a citrus-originated, seminatural sweetener. There is no investigation concerning the effect of NHDC on ulcerative colitis. The purpose of this study was to determine the therapeutic and protective effects of NHDC in Wistar Albino rats. NHDC was given for 7 days after or before colitis induction. The results showed that NHDC significantly reduced the interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) levels. Catalase levels did not show a significant difference between the groups. NHDC provided a remarkable decrease in the expression levels of cyclooxygenase-2 (COX-2), myeloperoxidase (MPO), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and nuclear factor kappa B (NF-κB). Total antioxidant status (TAS) levels were significantly elevated in NHDC treatment groups, while total oxidant status (TOS) and oxidative stress index (OSI) levels were significantly decreased. NHDC provided remarkable improvement in histological symptoms such as epithelial erosion, edema, mucosal necrosis, inflammatory cell infiltration, and hemorrhage. Also, caspase-3 expression levels were statistically decreased in NHDC treatment groups. The results indicated that NHDC might be a protection or alternative treatment for ulcerative colitis.
Collapse
Affiliation(s)
- Ilayda Erdem
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdar Aktas
- Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Serdal Ogut
- Department of Nutrition and Dietetics, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
4
|
Ran Q, Gan Q, Zhu Y, Song L, Shen L, Duan X, Zhu X, Huang W. Mechanism insights into the pleiotropic effects of nobiletin as a potential therapeutic agent on non-alcoholic fatty liver disease (NAFLD). Biomed Pharmacother 2024; 173:116322. [PMID: 38401524 DOI: 10.1016/j.biopha.2024.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases and is emerging as one of the fastest-growing causes of liver-related deaths worldwide. It is necessary to find strategies to effectively prevent and treat NAFLD, as no definitive drug has been approved. Nobiletin (NOB) is the critical active ingredient of Chinese herbal medicines such as Citrus aurantium and Citri Reticulatae Pericarpium, which have anti-inflammatory, antioxidant, lipid regulating, and insulin resistance regulating effects. Numerous studies have demonstrated that NOB can prevent and treat the onset and progression of NAFLD. In this review, the mechanisms of NOB for treating NAFLD have been summarized, hoping to provide a basis for subsequent studies of NOB and to provide a research ground for the development of therapeutic drugs for NAFLD.
Collapse
Affiliation(s)
- Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ye Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan 570102, China
| | - Li Song
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinyun Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Hernández-Abril PA, López-Meneses AK, Lizardi-Mendoza J, Plascencia-Jatomea M, Luque-Alcaraz AG. Cellular Internalization and Toxicity of Chitosan Nanoparticles Loaded with Nobiletin in Eukaryotic Cell Models ( Saccharomyces cerevisiae and Candida albicans). MATERIALS (BASEL, SWITZERLAND) 2024; 17:1525. [PMID: 38612040 PMCID: PMC11012996 DOI: 10.3390/ma17071525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
This study involved the synthesis and characterization of chitosan nanoparticles loaded with nobiletin (CNpN) and assessed their toxicity and cellular internalization in eukaryotic cell models (Saccharomyces cerevisiae and Candida albicans). Nanoparticles were prepared via the nanoprecipitation method and physicochemically characterized to determine their hydrodynamic diameter using dynamic light scattering (DLS), their surface charge through ζ-potential measurements, and their chemical structure via Fourier-transform infrared spectroscopy (FTIR). The hydrodynamic diameter and ζ-potential of chitosan nanoparticles (CNp) and CNpN were found to be 288.74 ± 2.37 nm and 596.60 ± 35.49 nm, and 34.51 ± 0.66 mV and 37.73 ± 0.19 mV, respectively. The scanning electron microscopy (SEM) images displayed a particle size of approximately 346 ± 69 nm, with notable sphericity for CNpN. FTIR analysis provided evidence of potential imine bonding between chitosan and nobiletin. Membrane integrity damage could be observed in both S. cerevisiae and C. albicans yeast stained with propidium iodide, demonstrating membrane integrity damage caused by CNp and CNpN, where higher concentration treatments inhibited the development of yeast cells. These findings suggest a selective therapeutic potential of CNpN, which could be promising for the development of antifungal and anticancer therapies. This study contributes to understanding the interaction between nanoparticles and eukaryotic cells, offering insights for future biomedical applications.
Collapse
Affiliation(s)
| | - Ana Karenth López-Meneses
- Microbiology and Mycotoxins Laboratory, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.K.L.-M.); (M.P.-J.)
| | - Jaime Lizardi-Mendoza
- Biopolymer Laboratory, Centro de Investigación y Desarrollo en Alimentación, A.C., Hermosillo 83304, Sonora, Mexico;
| | - Maribel Plascencia-Jatomea
- Microbiology and Mycotoxins Laboratory, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico; (A.K.L.-M.); (M.P.-J.)
| | | |
Collapse
|
6
|
Cheng Y, Feng S, Sheng C, Yang C, Li Y. Nobiletin from citrus peel: a promising therapeutic agent for liver disease-pharmacological characteristics, mechanisms, and potential applications. Front Pharmacol 2024; 15:1354809. [PMID: 38487166 PMCID: PMC10938404 DOI: 10.3389/fphar.2024.1354809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.
Collapse
Affiliation(s)
- Yongkang Cheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Sansan Feng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chuqiao Sheng
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chunfeng Yang
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
- Children’s Hospital of The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Ijaz MU, Haider S, Tahir A, Afsar T, Almajwal A, Amor H, Razak S. Mechanistic insight into the protective effects of fisetin against arsenic-induced reproductive toxicity in male rats. Sci Rep 2023; 13:3080. [PMID: 36813806 PMCID: PMC9947136 DOI: 10.1038/s41598-023-30302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Arsenic is one of the most hazardous environmental contaminants, which adversely affects the dynamics of male reproductive system. Fisetin (FIS) is a bioactive flavonoid, which is known to exert strong antioxidative effects. Therefore, the current research was planned to evaluate the alleviative efficacy of FIS against arsenic-induced reproductive damages. Forty-eight male albino rats were divided into 4 groups (n = 12), which were treated as follows: (1) Control, (2) Arsenic-intoxicated group (8 mg kg-1), (3) Arsenic + FIS-treated group (8 mg kg-1 + 10 mg kg-1), and (4) FIS-treated group (10 mgkg-1). After 56 days of treatment, the biochemical, lipidemic, steroidogenic, hormonal, spermatological, apoptotic and histoarchitectural profiles of rats were analyzed. Arsenic intoxication reduced the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GSR), in addition to glutathione (GSH) level. Conversely, the levels of thiobarbituric acid reactive substance (TBARS) and reactive oxygen species (ROS) were increased. Moreover, it escalated the level of low-density lipoprotein (LDL), triglycerides and total cholesterol, while declining the level of high-density lipoprotein (HDL). Furthermore, steroidogenic enzymes expressions, 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme (CYP11A1) and 17α-hydroxylase/17, 20-lyase (CYP17A1), were found to be reduced, which brought down the level of testosterone. Besides, the levels of gonadotropins (LH and FSH) were decreased. Additionally, a decline in sperm mitochondrial membrane potential (MMP), motility, epididymal sperm count and hypo-osmotic swelling (HOS) coil-tailed sperms was observed, whereas the dead sperms and structural damages (head, midpiece and tail) of sperms were escalated. Moreover, arsenic exposure up-regulated the mRNA expressions of apoptotic markers, namely Bax and caspase-3, whereas lowered the expression of anti-apoptotic marker, Bcl-2. In addition, it induced histoarchitectural changes in testes of rats. However, FIS treatment resulted in remarkable improvements in testicular and sperm parameters. Therefore, it was inferred that FIS could serve as a therapeutic candidate against arsenic-generated male reproductive toxicity attributing to its anti-oxidant, anti-lipoperoxidative, anti-apoptotic, and androgenic efficacy.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Saqlain Haider
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Houda Amor
- Department of Obstetrics, Gynecology and Reproductive Medicine, Saarland University Clinic, Homburg, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|