1
|
El-Sawaf AK, El-Moslamy SH, Kamoun EA, Hossain K. Green synthesis of trimetallic CuO/Ag/ZnO nanocomposite using Ziziphus spina-christi plant extract: characterization, statistically experimental designs, and antimicrobial assessment. Sci Rep 2024; 14:19718. [PMID: 39181914 PMCID: PMC11344774 DOI: 10.1038/s41598-024-67579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
In this study, Ziziphus spina christi leaves was used to synthesize a trimetallic CuO/Ag/ZnO nanocomposite by a simple and green method. Many characterizations e.g. FTIR, UV-vis DRS, SEM-EDX, TEM, XRD, zeta-size analysis, and DLS, were used to confirm green-synthesized trimetallic CuO/Ag/ZnO nanocomposite. The green, synthesized trimetallic CuO/Ag/ZnO nanocomposite exhibited a spherical dot-like structure, with an average particle size of around 7.11 ± 0.67 nm and a zeta potential of 21.5 mV. An extremely homogeneous distribution of signals, including O (79.25%), Cu (13.78%), Zn (4.42%), and Ag (2.55%), is evident on the surface of green-synthetic nanocomposite, according to EDX data. To the best of our knowledge, this is the first study to effectively use an industrially produced green trimetallic CuO/Ag/ZnO nanocomposite as a potent antimicrobial agent by employing different statistically experimental designs. The highest yield of green synthetic trimetallic CuO/Ag/ZnO nanocomposite was (1.65 mg/mL), which was enhanced by 1.85 and 5.7 times; respectively, by using the Taguchi approach in comparison to the Plackett-Burman strategy and basal condition. A variety of assays techniques were utilized to evaluate the antimicrobial capabilities of the green-synthesized trimetallic CuO/Ag/ZnO nanocomposite at a 200 µg/mL concentration against multidrug-resistant human pathogens. After a 36-h period, the tested 200 µg/mL of the green-synthetic trimetallic CuO/Ag/ZnO nanocomposite effectively reduced the planktonic viable counts of the studied bacteria, Escherichia coli and Staphylococcus aureus, which showed the highest percentage of biofilm reduction (98.06 ± 0.93 and 97.47 ± 0.65%; respectively).
Collapse
Affiliation(s)
- Ayman K El-Sawaf
- Department of Chemistry College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Shahira H El-Moslamy
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City 21934, Alexandria, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advance Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.
| | - Kaizar Hossain
- Department of Environmental Science, Asutosh College, University of Calcutta, 92 Shyama Prasad Mukherjee Rd, Jatin Das Park, Bhowanipore, Kolkata, W.B., India
| |
Collapse
|
2
|
Irede EL, Awoyemi RF, Owolabi B, Aworinde OR, Kajola RO, Hazeez A, Raji AA, Ganiyu LO, Onukwuli CO, Onivefu AP, Ifijen IH. Cutting-edge developments in zinc oxide nanoparticles: synthesis and applications for enhanced antimicrobial and UV protection in healthcare solutions. RSC Adv 2024; 14:20992-21034. [PMID: 38962092 PMCID: PMC11220610 DOI: 10.1039/d4ra02452d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
This paper presents a comprehensive review of recent advancements in utilizing zinc oxide nanoparticles (ZnO NPs) to enhance antimicrobial and UV protective properties in healthcare solutions. It delves into the synthesis techniques of ZnO NPs and elucidates their antimicrobial efficacy, exploring the underlying mechanisms governing their action against a spectrum of pathogens. Factors impacting the antimicrobial performance of ZnO NPs, including size, surface characteristics, and environmental variables, are extensively analyzed. Moreover, recent studies showcasing the effectiveness of ZnO NPs against diverse pathogens are critically examined, underscoring their potential utility in combatting microbial infections. The study further investigates the UV protective capabilities of ZnO NPs, elucidating the mechanisms by which they offer UV protection and reviewing recent innovations in leveraging them for UV-blocking applications in healthcare. It also dissects the factors influencing the UV shielding performance of ZnO NPs, such as particle size, dispersion quality, and surface coatings. Additionally, the paper addresses challenges associated with integrating ZnO NPs into healthcare products and presents future perspectives for overcoming these hurdles. It emphasizes the imperative for continued research efforts and collaborative initiatives to fully harness the potential of ZnO NPs in developing advanced healthcare solutions with augmented antimicrobial and UV protective attributes. By advancing our understanding and leveraging innovative approaches, ZnO NPs hold promise for addressing pressing healthcare needs and enhancing patient care outcomes.
Collapse
Affiliation(s)
| | - Raymond Femi Awoyemi
- Department of Chemistry, Mississippi State University Starkville Mississippi MS 39762 USA
| | - Babatunde Owolabi
- Department of Civil Engineering, University of Alabama Tuscaloosa Alabama AL 35487 USA
| | | | - Rofiat Odunayo Kajola
- Department of Biomedical Engineering, University of Rochester 500 Joseph C. Wilson Blvd. Rochester NY 14627 USA
| | - Ajibola Hazeez
- Department of Urban and Regional Planning, University of Lagos Lagos Nigeria
| | - Ayuba Adawale Raji
- Department of Surveying and Geo-Informatics, Bells University of Technology Ota Ogun State Nigeria
| | | | - Chimezie O Onukwuli
- Department of Chemistry, Eastern New Mexico University Portales New Mexico USA
| | - Asishana Paul Onivefu
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Ikhazuagbe Hilary Ifijen
- Department of Research Outreach, Rubber Research Institute of Nigeria Iyanomo Benin City Nigeria
| |
Collapse
|
3
|
El-Moslamy SH, Abd-Elhamid AI, Fawal GE. Large-scale production of myco-fabricated ZnO/MnO nanocomposite using endophytic Colonstachys rosea with its antimicrobial efficacy against human pathogens. Sci Rep 2024; 14:935. [PMID: 38195769 PMCID: PMC10776836 DOI: 10.1038/s41598-024-51398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
In this study, a ZnO/MnO nanocomposite was myco-fabricated using the isolated endophytic Clonostachys rosea strain EG99 as the nano-factory. The extract of strain EG99, a reducing/capping agent, was successfully titrated with equal quantities of Zn(NO3)2·6H2O and Mn(NO3)2·6H2O (precursors) in a single step to fabricate the rod-shaped ZnO/MnO nanocomposite of size 6.22 nm. The ZnO/MnO nanocomposite was myco-fabricated in 20 min, and the results were validated at 350 and 400 nm using UV-Vis spectroscopy. In a 7-L bioreactor, an industrial biotechnological approach was used to scale up the biomass of this strain, EG99, and the yield of the myco-fabricated ZnO/MnO nanocomposite. A controlled fed-batch fermentation system with a specific nitrogen/carbon ratio and an identical feeding schedule was used in this production process. Higher yields were obtained by adopting a controlled fed-batch fermentation approach in a 7-L bioreactor with a regular feeding schedule using a nitrogen/carbon ratio of 1:200. Overall, the fed-batch produced 89.2 g/l of biomass at its maximum, 2.44 times more than the batch's 36.51 g/l output. Furthermore, the fed-batch's maximum ZnO/MnO nanocomposite yield was 79.81 g/l, a noteworthy 14.5-fold increase over the batch's yield of 5.52 g/l. Finally, we designed an innovative approach to manage the growth of the endophytic strain EG99 using a controlled fed-batch fermentation mode, supporting the rapid, cheap and eco-friendly myco-fabrication of ZnO/MnO nanocomposite. At a dose of 210 µg/ml, the tested myco-fabricated ZnO/MnO nanocomposite exhibited the maximum antibacterial activity against Staphylococcus aureus (98.31 ± 0.8%), Escherichia coli (96.70 ± 3.29%), and Candida albicans (95.72 ± 0.95%). At the same dose, Staphylococcus aureus biofilm was eradicated in 48 h; however, Escherichia coli and Candida albicans biofilms needed 72 and 96 h, respectively. Our myco-fabricated ZnO/MnO nanocomposite showed strong and highly selective antagonistic effects against a variety of multidrug-resistant human pathogens. Therefore, in upcoming generations of antibiotics, it might be employed as a nano-antibiotic.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Department of Bioprocess Development (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, Alexandria, 21934, Egypt.
| | - Ahmed Ibrahim Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| | - Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| |
Collapse
|
4
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
5
|
Shettar SS, Bagewadi ZK, Kolvekar HN, Yunus Khan T, Shamsudeen SM. Optimization of subtilisin production from Bacillus subtilis strain ZK3 and biological and molecular characterization of synthesized subtilisin capped nanoparticles. Saudi J Biol Sci 2023; 30:103807. [PMID: 37744003 PMCID: PMC10514557 DOI: 10.1016/j.sjbs.2023.103807] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
The increase and dissemination of multi-drug resistant bacteria have presented a major healthcare challenge, making bacterial infections a significant concern. The present research contributes towards the production of bioactive subtilisin from a marine soil isolate Bacillus subtilis strain ZK3. Custard apple seed powder (raw carbon) and mustard oil cake (raw nitrogen) sources showed a pronounced effect on subtilisin production. A 7.67-fold enhancement in the production was evidenced after optimization with central composite design-response surface methodology. Subtilisin capped silver (AgNP) and zinc oxide (ZnONP) nanoparticles were synthesized and characterized by UV-Visible spectroscopy. Subtilisin and its respective nanoparticles revealed significant biological properties such as, antibacterial activity against all tested pathogenic strains with potential against Escherichia coli and Pseudomonas aeruginosa. Prospective antioxidant behavior of subtilisin, AgNP and ZnONP was evidenced through radical scavenging assays with ABTS and DPPH. Subtilisin, AgNP and ZnONP revealed cytotoxic effect against cancerous breast cell lines MCF-7 with IC50of 83.48, 3.62 and 7.57 µg/mL respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the structure, surface and thermostability properties. The study proposes the potential therapeutic applications of subtilisin and its nanoparticles, a way forward for further exploration in the field of healthcare.
Collapse
Affiliation(s)
- Shreya S. Shettar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Harsh N. Kolvekar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic Dental Science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
6
|
Fallah Imani A, Gomarian M, Ghorbanpour M, Ramak P, Chavoshi S. Foliar-applied nano-cerium dioxide differentially affect morpho-physiological traits and essential oil profile of Salvia mirzayanii Rech. f. & Esfand under drought stress and post-stress recovery conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108046. [PMID: 37757721 DOI: 10.1016/j.plaphy.2023.108046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Drought stress is known to diminish the growth and yield of plants by altering the physiological, biochemical and molecular processes, thus threatening food security worldwide. Nanoparticles (NPs) have emerged as an effective strategy to raise plant productivity under current rapid environmental challenges. However, there is little literature on mechanisms underlying the beneficial role of re-watering in drought-stressed plants treated with NPs. In this study, the effects of cerium dioxide nanoparticles [(CeO2 NPs), 0 (control), 125, 250, 500, and 1000 mL L-1] were investigated on morpho-physiological and phytochemical traits of Salvia mirzayanii plants under different drought stress intensities [(25%, 50%, 75%, and 100% (control) of field capacity (FC) moisture] and post-stress re-watering (recovery) in a three-way factorial arrangement based on randomized complete block design. Uptake and accumulation of CeO2 NPs in the leaf tissue of plant samples were confirmed using SEM and EDX techniques. The results of ANOVA demonstrated that growth and physio-phytochemical traits were significantly (p < 0.05) affected by individual treatment and/or their double and triple interactions. Exposure to various levels of CeO2 NPs during drought stress mitigated the adverse effects of stress on growth parameters (e.g., plant height, shoot and root dry weights, and root length) and photosynthetic pigments (chlorophyll a and b) content compared to the respective controls in varying degrees. However, proline and essential oil content were increased in drought-stressed plants, and tended to decrease during the period of recovery. Before re-watering, the antioxidant enzymes, CAT, POD, and SOD, activity in leaf tissues was increased with the increase of drought stress intensity upon both treated and non-treated CeO2 NPs conditions. However, the three-way interaction results demonstrated that recovery after drought stress following CeO2 NPs application particularly 1000 mL L-1 decreased the activity of antioxidant enzymes compared to the controls. Based on GC and GC-MS analysis, all essential oil samples predominantly composed of oxygenated monoterpenes and sesquiterpenes including Decane, Spathulenol, Octane, α-Terpinyl acetate, Hexyl isovalerate, Dodecane, Butanoic acid, Linalool, δ-Cadinene, Muurolol, α-Cadinol, Eudesm-7(11)-en-4-ol, which significantly (p < 0.05) changed under different experimental treatments. The recovery after stress, however, increased only the content of δ-Cadinene in plants from severe drought stress upon foliar application of 1000 mL L-1 CeO2 NPs compared to the non-recovery period. Conclusively, integrative use of CeO2 NPs and re-watering after drought stress could be an encouraging and eco-friendly strategy to improve both drought tolerance, growth and pyhtochemical contents in S. mirzayanii plants.
Collapse
Affiliation(s)
- Afshar Fallah Imani
- Department of Horticulture Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Masoud Gomarian
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran; Institute of Nanosciences and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Centre, AREEO, Khorramabad, Iran
| | - Saeid Chavoshi
- Department of Agronomy and Plant Breeding, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|