1
|
Yang L, Lu H, Zhang X, Zhu L, Xiong X, Xiao T, Zhu L. One-step cascade amplification system based on entropy-driven catalysis and DNAzyme triggered DNA walker for label-free detection of acetamiprid. Food Chem 2024; 463:141497. [PMID: 39368201 DOI: 10.1016/j.foodchem.2024.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Herein, an electrochemical aptasensor for highly sensitive detection of acetamiprid (ACE) was constructed based on a one-step cascade amplification strategy. This innovative strategy integrated DNA walker containing DNAzyme sequence into entropy-driven catalysis (EDC) system. The trigger strand was released by aptamer-specific binding to ACE, initiating the EDC amplification circuit and delivering DNA walker strands. The dangling DNA walker continuously bound and cleaved hairpin substrate to form G-quadruplex fragments with the assistance of Mg2+. The G-quadruplex fragments folded and captured hemin to form multitudinous G-quadruplex/hemin complexes in the presence of K+, generating significantly enhanced current, enabling enzyme-free, label-free and highly sensitive detection of ACE, with a linear detection range of 100 fM to 50 nM and a detection limit of 68.36 fM (S/N = 3). The constructed aptasensor achieved the reliable detection of ACE in vegetable soil and cucumber samples, demonstrating its potential application prospects in environmental protection and food supervision.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hao Lu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
2
|
Li Y, Lu J, Song X, Wang Y, Li Q, Pang Y, Gou M. Conjoint transcriptomics and metabolomics analyses provide insights into the toxicity of acetamiprid to Lethenteron reissneri larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116828. [PMID: 39094458 DOI: 10.1016/j.ecoenv.2024.116828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
The neonicotinoid pesticide acetamiprid has been widely used in agricultural pest control and was frequently detected in the water environment. There have been some studies of the toxic effects of acetamiprid on fish, but studies on aquatic lower vertebrates are still very limited. As a primitive jawless vertebrate, Lethenteron reissneri has a special position in evolution and is now listed as a national second level protected animal in China. The present study aimed to investigate the toxic effect of acetamiprid on the liver of L. reissneri larvae. A conjoint analysis of the transcriptomics and metabolomics was performed to determine the responses of L. reissneri larvae liver to acetamiprid at different concentrations (L for low concentration 25 mg/L and H for high concentration 100 mg/L). Even low concentrations of acetamiprid can cause significant liver damage to L. reissneri larvae in a short period. In omics analyses, 2141 differentially expressed genes (DEGs) and 183 differentially abundant metabolites (DAMs) were identified in the H/Control group, and 229 DEGs and 144 DAMs were identified in the L/C group. Correlation analyses revealed acetamiprid affected the metabolic pathways of L. reissneri larvae liver such as the glycerophospholipid metabolism and arachidonic acid metabolism. This study not only enriches the basis for understanding the toxic effect of acetamiprid exposure to L. reissneri larvae liver and provides more information on the breeding and conservation of L. reissneri, but also further causes attention on toxicity risk from acetamiprid to aquatic lower vertebrate species.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Xiaoping Song
- Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China; Respiratory Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian 116001, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
3
|
Lewandowska-Wosik A, Chudzińska EM. Fluctuating Asymmetry Spotted Wing Drosophila (Diptera: Drosophilidae) Exposed to Sublethal Doses of Acetamiprid and Nicotine. INSECTS 2024; 15:681. [PMID: 39336649 PMCID: PMC11432000 DOI: 10.3390/insects15090681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Long-term exposure to low concentrations of toxic substances can cause several adverse consequences ranging from molecular to morphological. Sublethal doses may also lead to increased tolerance in the offspring of surviving individuals. One of the consequences of such stress is deviations from the ideal body symmetry during development, reflected by increased levels of fluctuating asymmetry (FA). This research aimed to verify FA in the wing veins of insects belonging to the Drosophilidae family-Drosophila suzukii, a fruit pest controlled by the insecticide acetamiprid, a neonicotinoid. To determine whether FA varied depending on insecticides present in the diet, multigenerational cultures of D. suzukii were carried out on media supplemented with different concentrations (below the LC50) of two insecticides. Nicotine was used as a positive control. Fecundity decreased, the number of insects decreased, and breeding did not continue beyond the tenth generation. However, the FA level at different concentrations was similar, and high FA values were observed even at lower acetamiprid concentrations. We did not see significant changes in FA levels in subsequent generations. D. suzukii proved extremely sensitive to acetamiprid, and FA is a good index of this sensitivity.
Collapse
Affiliation(s)
- Anetta Lewandowska-Wosik
- Department of Genetic, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | | |
Collapse
|
4
|
Tadei R, Silva CID, Mathias da Silva EC, Malaspina O. Effects of the insecticide acetamiprid and the fungicide azoxystrobin on locomotion activity and mushroom bodies of solitary bee Centris analis. CHEMOSPHERE 2024; 364:143254. [PMID: 39233294 DOI: 10.1016/j.chemosphere.2024.143254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Pesticide use is a major factor contributing to the global decline in bee populations. Sublethal effects, such as behavior alterations, are neglected in pesticide regulation for pollinators. However, these effects can bring important information to understanding the impacts of pesticides on bees' daily activities. In this study, we aimed to investigate the effects of the insecticide acetamiprid (7 ng/μL) and the fungicide azoxystrobin (10 ng/μL) on the behavior of the Neotropical solitary bee Centris analis. Female and male bees were exposed to these chemicals continuously for 48 h, followed by an additional 48 h without contaminated food, totaling 96 h of observation. We used five experimental groups: control, solvent control, insecticide, fungicide, and pesticide mixture (insecticide + fungicide). Behavioral alterations based on locomotion and light response were assessed by video tracking at 48 (end of pesticide exposure) and 96 h (end of bioassay). In addition, after recording bees at 96 h, the individuals were anesthetized for brain collection and histological evaluation of mushroom bodies to evaluate if pesticides can damage their neurons and impair the cognitive processes and responses of bees to sensory stimuli. Bees exposed to acetamiprid and pesticide mixture showed lethargic movements and impaired locomotion at 48 h. Notably, these behavioral effects were no longer evident after the bees consumed uncontaminated food for an additional 48 h, totaling 96 h from the start of pesticide exposure. Only fungicide exposure did not result in any behavioral or brain histological changes. Therefore, our study showed that acetamiprid at an estimated residual concentration, despite being classified as having low toxicity for bees, can cause significant initial locomotion disruption in solitary bees. These findings highlight the importance of considering sublethal effects in environmental risk assessment.
Collapse
Affiliation(s)
- Rafaela Tadei
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, Brazil; Federal University of São Carlos, Department of Environmental Sciences, Sorocaba, Brazil.
| | - Claudia Inês da Silva
- Federal University of São Carlos, Department of Environmental Sciences, Sorocaba, Brazil
| | | | - Osmar Malaspina
- São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, Brazil
| |
Collapse
|
5
|
Dam-on A, Nimako C, Kulprasertsri S, Ikenaka Y, Yohannes YB, Nakayama SMM, Ishizuka M, Poapolathep S, Poapolathep A, Khidkhan K. Characterization of Neonicotinoid Metabolites by Cytochrome P450-Mediated Metabolism in Poultry. TOXICS 2024; 12:618. [PMID: 39195720 PMCID: PMC11359332 DOI: 10.3390/toxics12080618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Neonicotinoids, a neuro-effective class of insecticides, are heavily applied in agricultural activities worldwide. Poultry can be exposed to neonicotinoids by several routes, but the knowledge of neonicotinoid's metabolism in poultry and its associated interspecies differences is highly limited. Hence, this study aims to investigate the species differences in metabolite formations, as well as cytochrome P450 (CYP)-dependent metabolism of four major neonicotinoid compounds, acetamiprid, imidacloprid, clothianidin, and thiamethoxam, in poultry. In vitro biotransformation assays using hepatic microsomes of chicken, ducks, geese, quails, and rats were conducted. Metabolites of neonicotinoids were then screened by LC/Q-TOF and quantified by LC/MS/MS. The results revealed an existence of interspecies differences in the formations of N-[(6-chloro-3-pyridyl) methyl] -N-methyl acetamidine (IM-1-5) of acetamiprid and dm-clothianidin of clothianidin between chicken and other species. In addition, the greatest CYP activities in the metabolism of most neonicotinoid substrates, such as acetamiprid to dm-acetamiprid, imidacloprid to hydroxylated-imidacloprid and imidacloprid-olefin, clothianidin to dm-clothianidin, and thiamethoxam to clothianidin, were found in chicken. These results suggested that the CYPs in chicken may have a greater capacity for metabolism of neonicotinoids compared to other poultry. This study further revealed that the maximum intrinsic clearance of dn-imidacloprid and dn-clothianidin in ducks may be superintended by CYP-mediated nitro-reductions of imidacloprid and clothianidin. Further studies employing CYP recombinant enzymes may be required to elucidate the specific CYP isoforms that may be involved in neonicotinoid metabolism in avian species.
Collapse
Affiliation(s)
- Adisorn Dam-on
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.D.-o.); (S.P.); (A.P.)
| | - Collins Nimako
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (C.N.); (Y.I.); (Y.B.Y.); (S.M.M.N.); (M.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Sittinee Kulprasertsri
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand;
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (C.N.); (Y.I.); (Y.B.Y.); (S.M.M.N.); (M.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
- Water Research Group, School of Environmental Sciences and Development, North-West University, P.O. Box X6001, Potchefstroom 2531, South Africa
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Yared B. Yohannes
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (C.N.); (Y.I.); (Y.B.Y.); (S.M.M.N.); (M.I.)
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Japan
| | - Shouta M. M. Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (C.N.); (Y.I.); (Y.B.Y.); (S.M.M.N.); (M.I.)
- School of Veterinary Medicine, The University of Zambia, Great East Road, P.O. Box 32379, Lusaka 10101, Zambia
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (C.N.); (Y.I.); (Y.B.Y.); (S.M.M.N.); (M.I.)
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.D.-o.); (S.P.); (A.P.)
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.D.-o.); (S.P.); (A.P.)
| | - Kraisiri Khidkhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (A.D.-o.); (S.P.); (A.P.)
| |
Collapse
|
6
|
Zeeshan M, Li H, Yousaf G, Ren H, Liu Y, Arshad M, Dou Z, Han X. Effect of formulations and adjuvants on the properties of acetamiprid solution and droplet deposition characteristics sprayed by UAV. FRONTIERS IN PLANT SCIENCE 2024; 15:1441193. [PMID: 39157513 PMCID: PMC11327081 DOI: 10.3389/fpls.2024.1441193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024]
Abstract
While the pesticide formulations are widely used for pest control, the combined effects of these formulations with adjuvants on droplet behavior, spraying characteristics, and pest control still need to be studied. To clarify their impact on droplet behavior, spraying characteristics, and control efficacy, six formulations of acetamiprid and six adjuvants were examined. A series of laboratory and field experiments were conducted to analyze the physicochemical properties, toxicity against cotton aphids, droplet deposition characteristics, and droplet drift. The results indicated that 5% acetamiprid micro-emulsion (ME) enhanced the physicochemical features and effectiveness in pest control compared to other formulations. The nongjianfei considerably enhanced the efficiency of all acetamiprid formulations when added. The addition of selected adjuvants to pesticide formulations improved the performance of certain physicochemical properties such as viscosity and surface tension and led to higher aphid mortality rates, demonstrating enhanced pest control effectiveness during the present study. In the field experiments, the combination effect of acetamiprid formulations and adjuvants exhibited a higher droplet size, coverage, and density within the cotton canopy. However, 5% acetamiprid ME was found to be most effective followed by nongjianfei. Furthermore, 5% acetamiprid ME with adjuvant reduced the droplet drift and provided better deposition when compared with other formulations. Overall, the combination of specific formulations and adjuvants led to improved physicochemical properties, enhanced droplet deposition characteristics, reduced spray drift, and increased pesticide deposition. These findings highlighted the significance of selecting appropriate pesticide formulations and adjuvants and provided a solid foundation for efficient pesticide spraying through UAVs.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Haoran Li
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Gulfam Yousaf
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Hao Ren
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Yapeng Liu
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Muhammad Arshad
- Department of Entomology, University of Sargodha, Sargodha, Pakistan
| | - Zechen Dou
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi, China
| |
Collapse
|
7
|
Seccia S, Albrizio S, Morelli E, Dini I. Development and Validation of a High-Performance Liquid Chromatography Diode Array Detector Method to Measure Seven Neonicotinoids in Wheat. Foods 2024; 13:2235. [PMID: 39063319 PMCID: PMC11275328 DOI: 10.3390/foods13142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Neonicotinoids (NEOs), used as insecticides against aphids, whiteflies, lepidopterans, and beetles, have numerous detrimental impacts on human health, including chronic illnesses, cancer, infertility, and birth anomalies. Monitoring the residues in food products is necessary to guarantee public health and ecological balance. The present work validated a new method to measure seven neonicotinoid insecticides (acetamiprid ACT, clothianidin CLT, dinotefuran DNT, imidacloprid IMD, nitenpyram NTP, thiacloprid TCP, and thiamethoxan THT) in wheat. The analytical procedure was based on simple and fast wheat sample cleanup using solid-phase extraction (SPE) to remove interferents and enrich the NEOs, alongside the NEOs' separation and quantification by reverse-phase chromatography coupled with a diode array detector (DAD). The validation process was validated using the accuracy profile strategy, a straightforward decision tool based on the measure of the total error (bias plus standard deviation) of the method. Our results proved that, in the future, at least 95% of the results obtained with the proposed method would fall within the ±15% acceptance limits. The test's cost-effectiveness, rapidity, and simplicity suggest its use for determining the levels of acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam in routine analyses of wheat.
Collapse
Affiliation(s)
| | | | | | - Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (S.S.); (S.A.); (E.M.)
| |
Collapse
|
8
|
Huang M, Wang Y, Wang Y, Lin G, Wen X, Xu X, Hong S, Chen Y, Lin H, Yang Z, Zhao K, Liu J, Wang J, Wang H, Wang N, Chen Y, Jiang Q. Exposure of pregnant women to neonicotinoids in Wenzhou City, East China: A biomonitoring study. ENVIRONMENT INTERNATIONAL 2024; 189:108811. [PMID: 38870579 DOI: 10.1016/j.envint.2024.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND China produces and consumes a large amount of neonicotinoids. A non-negligible exposure to neonicotinoids might occur for Chinese pregnant women, but relevant data remain limited. OBJECTIVE To investigate the exposure to neonicotinoids by urinary biomonitoring in pregnant women from Wenzhou City, East China. METHODS We selected 432 pregnant women in Wenzhou City in 2022. A total of eight parent neonicotinoids and four metabolites were determined in single spot urine by liquid chromatography coupled to mass spectrometry. Basic characteristics, physical activity, pre-pregnant body mass index, and intake of drinking water and food were investigated by the questionnaire. Health risk was assessed by hazard quotient (HQ) and hazard index (HI) based on human safety thresholds derived from different health endpoints. RESULTS Neonicotinoids and their metabolites in urine had a detection frequency between 0 % and 80.1 %. At least one neonicotinoid or metabolite was detected in 93.5 % of urine samples. Except for clothianidin (51.2 %) and N-desmethyl-acetamiprid (80.1 %), the detection frequencies of other neonicotinoids and metabolites ranged from 0 % to 43.8 %. The summed concentrations of all neonicotinoids and their metabolites ranged from < LOD to 222.83 μg/g creatinine with the median concentration of 2.58 μg/g creatinine. Maternal age, educational level, occupation, household income, screen time, and pre-pregnant body mass index were associated with detection frequencies or concentrations of neonicotinoids and their metabolites. Pregnant women with higher consumption frequencies of wheat, fresh vegetable, shellfish, fresh milk, and powdered milk had higher detection frequencies of neonicotinoids and their metabolites. Both HQ and HI were less than one. CONCLUSIONS Overall, pregnant women in Wenzhou City showed a notable frequency of exposure to at least one neonicotinoid, although the exposure frequency for each specific neonicotinoid was generally low. Several food items derived from plants and animals were potential exposure sources. A low health risk was found based on current safety thresholds.
Collapse
Affiliation(s)
- Min Huang
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Yuanping Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Guankai Lin
- Wenzhou Center for Disease Control and Prevention, Wenzhou 325000, Zhejiang Province, China
| | - Xiaoting Wen
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Xiaoyang Xu
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Sumiao Hong
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Yuanyuan Chen
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Haiping Lin
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China
| | - Zichen Yang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Ke Zhao
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiaqi Liu
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiwei Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| | - Hexing Wang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China.
| | - Na Wang
- The People's Hospital of Pingyang, Pingyang County, Wenzhou 325400, Zhejiang Province, China.
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1G5Z3, Canada
| | - Qingwu Jiang
- Key Laboratory of Public Health Safety of Ministry of Education/School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Abuagla MIB, Iqbal J, Raweh HSA, Alqarni AS. Insight into Olfactory Learning, Memory, and Mortality of Apis mellifera jemenitica after Exposure to Acetamiprid Insecticide. INSECTS 2024; 15:473. [PMID: 39057206 PMCID: PMC11276894 DOI: 10.3390/insects15070473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The honey bee, a significant crop pollinator, encounters pesticides through various routes of exposure during foraging and flower visitation. Considering the potential threat of pesticide poisoning, the indigenous Saudi bee Apis mellifera jemenitica is susceptible to the risks associated with acetamiprid, a neonicotinoid insecticide. This study investigates the acetamiprid-induced effects on the survival, olfactory learning, and memory formation of A. m. jemenitica through two exposure routes: topical application and oral ingestion. Field-realistic and serially diluted concentrations (100, 50, 25, and 10 ppm) of acetamiprid led to notable mortality at 4, 12, 24, and 48 h after treatment, with peak mortality observed at 24 h and 48 h for both exposure routes. Bee mortality was concentration-dependent, increasing with the rising concentration of acetamiprid at the tested time intervals. Food consumption following oral exposure exhibited a concentration-dependent pattern, steadily decreasing with increasing concentrations of acetamiprid. Oral exposure resulted in a substantially higher cumulative mortality (55%) compared to topical exposure (15%), indicating a significant disparity in bee mortality between the two exposure routes. The 24 h post-treatment LC50 values for acetamiprid were 160.33 and 12.76 ppm for topical application and oral ingestion, respectively. The sublethal concentrations (LC10, LC20, and LC30) of acetamiprid were 15.23, 34.18, and 61.20 ppm, respectively, following topical exposure, and 2.85, 4.77, and 6.91 ppm, respectively, following oral exposure. The sublethal concentrations of acetamiprid significantly decreased learning during the 2nd-3rd conditioning trials and impaired memory formation at 2, 12, and 24 h following both topical and oral exposure routes, compared to the control bees. Notably, the sublethal concentrations were equally effective in impairing bee learning and memory. Taken together, acetamiprid exposure adversely affected bee survival, hindered learning, and impaired the memory retention of learned tasks.
Collapse
Affiliation(s)
| | | | | | - Abdulaziz S. Alqarni
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (M.I.B.A.); (J.I.)
| |
Collapse
|
10
|
El Gazzar WB, Bayoumi H, Youssef HS, Ibrahim TA, Abdelfatah RM, Gamil NM, Iskandar MK, Abdel-Kareim AM, Abdelrahman SM, Gebba MA, Mohamed MA, Mokhtar MM, Kharboush TG, Bayoumy NM, Alomar HA, Farag AA. Role of IRE1α/XBP1/CHOP/NLRP3 Signalling Pathway in Neonicotinoid Imidacloprid-Induced Pancreatic Dysfunction in Rats and Antagonism of Lycopene: In Vivo and Molecular Docking Simulation Approaches. TOXICS 2024; 12:445. [PMID: 39058097 PMCID: PMC11281275 DOI: 10.3390/toxics12070445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024]
Abstract
Imidacloprid (IMI) is a commonly used new-generation pesticide that has numerous harmful effects on non-targeted organisms, including animals. This study analysed both the adverse effects on the pancreas following oral consumption of imidacloprid neonicotinoids (45 mg/kg daily for 30 days) and the potential protective effects of lycopene (LYC) administration (10 mg/kg/day for 30 days) with IMI exposure in male Sprague-Dawley rats. The apoptotic, pyroptotic, inflammatory, oxidative stress, and endoplasmic reticulum stress biomarkers were evaluated, along with the histopathological alterations. Upon IMI administration, noticeable changes were observed in pancreatic histopathology. Additionally, elevated oxidative/endoplasmic reticulum-associated stress biomarkers, inflammatory, pyroptotic, and apoptotic biomarkers were also observed following IMI administration. LYC effectively reversed these alterations by reducing oxidative stress markers (e.g., MDA) and enhancing antioxidant enzymes (SOD, CAT). It downregulated ER stress markers (IRE1α, XBP1, CHOP), decreased pro-inflammatory cytokines (TNF-α, IL-1β), and suppressed pyroptotic (NLRP3, caspase-1) along with apoptotic markers (Bax, cleaved caspase-3). It also improved the histopathological and ultrastructure alterations brought on by IMI toxicity.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (M.A.M.)
| | - Heba S. Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.S.Y.); (T.A.I.)
| | - Tayseer A. Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.S.Y.); (T.A.I.)
| | - Reham M. Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Noha M. Gamil
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12573, Egypt;
| | - Mervat K. Iskandar
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (M.K.I.); (A.M.A.-K.)
| | - Amal M. Abdel-Kareim
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (M.K.I.); (A.M.A.-K.)
| | - Shaymaa M. Abdelrahman
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mohammed A. Gebba
- Department of Anatomy& Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Mona Atya Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (M.A.M.)
| | - Maha M. Mokhtar
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Tayseir G. Kharboush
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Nervana M. Bayoumy
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia;
| | - Hatun A. Alomar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| |
Collapse
|
11
|
Zhu H, Zhang X, Li C, Li X, Wu J. Photochemical Degradation of the New Nicotine Pesticide Acetamiprid in Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:62. [PMID: 38615308 DOI: 10.1007/s00128-024-03875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2024] [Indexed: 04/15/2024]
Abstract
Acetamiprid is a novel nicotinic pesticide widely used in modern agriculture because of its low toxicity and specific biological target properties. The objective of this study was to understand the photolysis pattern of acetamiprid in the water column and elucidate its degradation products and mechanism. It was observed that acetamiprid exhibited different photolysis rates under different light source conditions in pure water, with ultraviolet > fluorescence > sunlight; furthermore, its photolysis half-life ranged from 17.3 to 28.6 h. In addition, alkaline conditions (pH 9.0) accelerated its photolysis rate, which increased with pH. Using gas chromatography-mass spectrometry, five direct photolysis products generated during the exposure of acetamiprid to pure water were successfully separated and identified. The molecular structure of acetamiprid was further analyzed using density functional theory, and the active photodegradation sites of acetamiprid were predicted. The mechanism of the photolytic transformation of acetamiprid in water was mainly related to hydroxyl substitution and oxidation. Based on these findings, a comprehensive transformation pathway for acetamiprid was proposed.
Collapse
Affiliation(s)
- Huimin Zhu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xinqi Zhang
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Changjian Li
- School of Public Health, Shandong Second Medical University, Weifang, China.
| | - Xueru Li
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jinyuan Wu
- School of Public Health, Shandong Second Medical University, Weifang, China
| |
Collapse
|
12
|
Longoni V, Kandel Gambarte PC, Rueda L, Fuchs JS, Rovedatti MG, Wolansky MJ. Long-lasting developmental effects in rat offspring after maternal exposure to acetamiprid in the drinking water during gestation. Toxicol Sci 2024; 198:61-75. [PMID: 38011675 DOI: 10.1093/toxsci/kfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neonicotinoids (NNTs) are a class of insecticides proposed to be safe for pest control in urban, suburban, and agricultural applications. However, little is known about their developmental effects after repeated low-dose exposures during gestation. Here, we tested a dose considered subthreshold for maternal toxicity in rats (6 mg/kg/day) by assessing several morphological, biochemical, and neurobehavioral features in preterm fetuses and developing pups after maternal administration of the NTT acetamiprid (ACP) dissolved in the drinking water during gestational days (GD) 2-19. The exploratory evaluation included monitoring maternal body weight gain, fetal viability, body weight and sex ratio, cephalic length, neonatal body weight and sex ratio, metabolic enzymes in the placenta, maternal blood and fetal liver, and anogenital distance and surface righting response during infancy. We also used the circling training test to study the integrity of the associative-spatial-motor response in adolescence. Results showed no consistent findings indicating maternal, reproductive or developmental toxicity. However, we found ACP effects on maternal body weight gain, placental butyrylcholinesterase activity, and neurobehavioral responses, suggestive of a mild toxic action. Thus, our study showed a trend for developmental susceptibility at a dose so far considered subtoxic. Although the ACP concentration in environmental samples of surface water and groundwater has been mostly reported to be much lower than that used in our study, our results suggest that the ACP point of departure used in current guidelines aimed to prevent developmental effects may need to be verified by complementary sensitive multiple-endpoint testing in the offspring.
Collapse
Affiliation(s)
- Victoria Longoni
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Paula Cristina Kandel Gambarte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET) and FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Lis Rueda
- FCEyN, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Julio Silvio Fuchs
- Instituto IQUIBICEN-CONICET and Departamento Química Biológica, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - María Gabriela Rovedatti
- Departamentos Química Biológica and Biodiversidad y Biología Experimental, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Marcelo Javier Wolansky
- Departamento Química Biológica, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
13
|
Jiang P, Zhang S, Chai Y, He Q, Gao Q, Xiao J, Yu L, Cao H. Digestion dynamics of acetamiprid during royal jelly formation and exposure risk assessment to honeybee larva based on processing factor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93044-93053. [PMID: 37498429 DOI: 10.1007/s11356-023-28954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Previous studies to the exposure effects of acetamiprid on honeybees were based on the analysis of bee pollen and honey sacs from field trials or of beebread and honey in the hive, which overestimate or underestimate the risk of exposure to pesticide residues. It was believed that the processing factor (PF) is an important variable to determine the final pesticide residue during royal jelly formation and the actual risk to honeybee larva. Hence, a QuEChERS method to determine acetamiprid contents in honeybee samples was established in this study. Then, the PFs for acetamiprid in beebread fermentation, honey brewing, and royal jelly formation were determined to be 0.85, 0.76, and 0.16, respectively. The PF for royal jelly formation was 0.04 when acetamiprid was detected in beebread alone, and it was 0.12 when acetamiprid was only detected in honey. Finally, the predicted exposure concentration of acetamiprid in royal jelly was calculated to be 2.05 µg/kg using the PF without significant difference with the 90th percentile value (3.64 µg/kg) in the actual sample. However, the value was 16.62 µg/kg without considering the PF. This study establishes a methodology for the correct evaluation of the risk to bee larva of acetamiprid residues in bee pollen and honey sac contents and the residual levels in royal jelly.
Collapse
Affiliation(s)
- Peng Jiang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Shiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yuhao Chai
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qibao He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jinjing Xiao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Linsheng Yu
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|