1
|
Lawson A, Annunziato M, Bashirova N, Eeza MNH, Matysik J, Alia A, Berry JP. High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance Identifies Impairment of Metabolism by T-2 Toxin, in Relation to Toxicity, in Zebrafish Embryo Model. Toxins (Basel) 2024; 16:424. [PMID: 39453200 PMCID: PMC11511446 DOI: 10.3390/toxins16100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Among the widespread trichothecene mycotoxins, T-2 toxin is considered the most toxic congener. In the present study, we utilized high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR), coupled to the zebrafish (Danio rerio) embryo model, as a toxicometabolomics approach to elucidate the cellular, molecular and biochemical pathways associated with T-2 toxicity. Aligned with previous studies in the zebrafish embryo model, exposure to T-2 toxin was lethal in the high parts-per-billion (ppb) range, with a median lethal concentration (LC50) of 105 ppb. Exposure to the toxins was, furthermore, associated with system-specific alterations in the production of reactive oxygen species (ROS), including decreased ROS production in the liver and increased ROS in the brain region, in the exposed embryos. Moreover, metabolic profiling based on HRMAS NMR revealed the modulation of numerous, interrelated metabolites, specifically including those associated with (1) phase I and II detoxification, and antioxidant pathways; (2) disruption of the phosphocholine lipids of cell membranes; (3) mitochondrial energy metabolism, including apparent disruption of the tricarboxylic acid (TCA) cycle, and the electron transport chain of oxidative phosphorylation, as well as "upstream" effects on carbohydrate, i.e., glucose metabolism; and (4) several compensatory catabolic pathways. Taken together, these observations enabled development of an integrated, system-level model of T-2 toxicity in relation to human and animal health.
Collapse
Affiliation(s)
- Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
| | - Mark Annunziato
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Muhamed N. Hashem Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany; (N.B.); (M.N.H.E.); (J.M.)
| | - A. Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany;
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John. P. Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA; (A.L.); (M.A.)
- Institute of Environment, Florida International University, Miami, FL 33181, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
Pham PC, Taylor M, Nguyen GTH, Beltran J, Bennett JL, Ho J, Donald WA. Binding of Per- and Polyfluoroalkyl Substances to β-Lactoglobulin from Bovine Milk. Chem Res Toxicol 2024; 37:757-770. [PMID: 38625865 DOI: 10.1021/acs.chemrestox.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are known for their high environmental persistence and potential toxicity. The presence of PFAS has been reported in many dairy products. However, the mechanisms underlying the accumulation of PFAS in these products remain unclear. Here, we used native mass spectrometry and molecular dynamics simulations to probe the interactions between 19 PFAS of environmental concern and two isoforms of the major bovine whey protein β-lactoglobulin (β-LG). We observed that six of these PFAS bound to both protein isoforms with low- to mid-micromolar dissociation constants. Based on quantitative, competitive binding experiments with endogenous ligands, PFAS can bind orthosterically and preferentially to β-LG's hydrophobic ligand-binding calyx. β-Cyclodextrin can also suppress binding of PFAS to β-LG owing to the ability of β-cyclodextrin to directly sequester PFAS from solution. This research sheds light on PFAS-β-LG binding, suggesting that such interactions could impact lipid-fatty acid transport in bovine mammary glands at high PFAS concentrations. Furthermore, our results highlight the potential use of β-cyclodextrin in mitigating PFAS binding, providing insights toward the development of strategies to reduce PFAS accumulation in dairy products and other biological systems.
Collapse
Affiliation(s)
- P Chi Pham
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Mackenzie Taylor
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jeunesse Beltran
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
4
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
5
|
Adedara IA, Abioye OO, Oyedele GT, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Perfluorooctanoic acid induces behavioral impairment and oxidative injury in Nauphoeta cinerea nymphs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110340-110351. [PMID: 37783994 DOI: 10.1007/s11356-023-30156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic contaminant with potential health threats to both animals and humans. However, the impact of PFOA on insects, which play significant roles in ecosystems, is understudied. We evaluated the toxicological impact of ecologically relevant concentrations of PFOA (0, 25, 50, 100, and 200 µg L-1) on Nauphoeta cinerea nymphs following exposure for 42 consecutive days. We analyzed the behavior of the insects with automated video-tracking software and processed the head, midgut, and fat body for biochemical assays. PFOA-exposed insects exhibited significant reductions in locomotory abilities and an increase in freezing time. Furthermore, PFOA exposure reduced acetylcholinesterase activity in the insect head. PFOA exposure increased the activities of superoxide dismutase, glutathione peroxidase, and catalase in the head and midgut, but decreased them in the fat body. PFOA also significantly increased glutathione-S transferase activity, while decreasing glutathione levels in the head, midgut, and fat body. Additionally, PFOA exposure increased reactive oxygen and nitrogen species, nitric oxide, lipid peroxidation, and protein carbonyl contents in the head, midgut, and fat body of the insects. In conclusion, our findings indicate that PFOA exposure poses an ecological risk to Nauphoeta cinerea.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Oluwatoyin O Abioye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
7
|
Fliszár-Nyúl E, Bock I, Csepregi R, Szente L, Szabó I, Csenki Z, Poór M. Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103965. [PMID: 36031178 DOI: 10.1016/j.etap.2022.103965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×104 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native β-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native β-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Rita Csepregi
- Lab-on-a-Chip Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság útja 13, Pécs H-7624, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, Budapest H-1097, Hungary.
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő H-2100, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
8
|
Testing the Protective Effects of Sulfobutylether-Βeta-Cyclodextrin (SBECD) and Sugammadex against Chlorpromazine-Induced Acute Toxicity in SH-SY5Y Cell Line and in NMRI Mice. Pharmaceutics 2022; 14:pharmaceutics14091888. [PMID: 36145637 PMCID: PMC9504268 DOI: 10.3390/pharmaceutics14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorpromazine (CPZ) is an antipsychotic drug which can cause several adverse effects and drug poisoning. Recent studies demonstrated that CPZ forms highly stable complexes with certain cyclodextrins (CDs) such as sulfobutylether-β-CD (SBECD) and sugammadex (SGD). Since there is no available antidote in CPZ intoxication, and considering the good tolerability of these CDs even if when administered parenterally, we aimed to investigate the protective effects of SBECD and SGD against CPZ-induced acute toxicity employing in vitro (SH-SY5Y neuroblastoma cells) and in vivo (zebrafish embryo) models. Our major findings and conclusions are the following: (1) both SBECD and SGD strongly relieved the cytotoxic effects of CPZ in SH-SY5Y cells. (2) SGD co-treatment did not affect or increase the CPZ-induced 24 h mortality in NMRI mice, while SBECD caused a protective effect in a dose-dependent fashion. (3) The binding constants of ligand–CD complexes and/or the in vitro protective effects of CDs can help to estimate the in vivo suitability of CDs as antidotes; however, some other factors can overwrite these predictions.
Collapse
|
9
|
Gebreab KY, Benetti D, Grosell M, Stieglitz JD, Berry JP. Toxicity of perfluoroalkyl substances (PFAS) toward embryonic stages of mahi-mahi (Coryphaena hippurus). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1057-1067. [PMID: 35982347 DOI: 10.1007/s10646-022-02576-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Perfluoroalkyl substances (PFAS) are highly persistent organic pollutants that have been detected in a wide array of environmental matrices and, in turn, diverse biota including humans and wildlife wherein they have been associated with a multitude of toxic, and otherwise adverse effects, including ecosystem impacts. In the present study, we developed a toxicity assay for embryonic stages of mahi-mahi (Coryphaena hippurus), as an environmentally relevant pelagic fish species, and applied this assay to the evaluation of the toxicity of "legacy" and "next-generation" PFAS including, respectively, perfluorooctanoic acid (PFOA) and several perfluoroethercarboxylic acids (PFECA). Acute embryotoxicity, in the form of lethality, was measured for all five PFAS toward mahi-mahi embryos with median lethal concentrations (LC50) in the micromolar range. Consistent with studies in other similar model systems, and specifically the zebrafish, embryotoxicity in mahi-mahi generally (1) correlated with fluoroalkyl/fluoroether chain length and hydrophobicity, i.e., log P, of PFAS, and thus, aligned with a role of uptake in the relative toxicity; and (2) increased with continuous exposure, suggesting a possible role of development stage specifically including a contribution of hatching (and loss of protective chorion) and/or differentiation of target systems (e.g., liver). Compared to prior studies in the zebrafish embryo model, mahi-mahi was significantly more sensitive to PFAS which may be related to differences in either exposure conditions (e.g., salinity) and uptake, or possibly differential susceptibility of relevant targets, for the two species. Moreover, when considered in the context of the previously reported concentration of PFAS within upper sea surface layers, and co-localization of buoyant eggs (i.e., embryos) and other early development stages (i.e., larvae, juveniles) of pelagic fish species to the sea surface, the observed toxicity potentially aligns with environmentally relevant concentrations in these marine systems. Thus, impacts on ecosystems including, in particular, population recruitment are a possibility. The present study is the first to demonstrate embryotoxicity of PFAS in a pelagic marine fish species, and suggests that mahi-mahi represents a potentially informative, and moreover, environmentally relevant, ecotoxicological model for PFAS in marine systems.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - J P Berry
- Department of Chemistry and Biochemistry, Institute of Environment, Florida International University, North Miami, FL, USA.
| |
Collapse
|
10
|
Adedara IA, Souza TP, Canzian J, Olabiyi AA, Borba JV, Biasuz E, Sabadin GR, Gonçalves FL, Costa FV, Schetinger MRC, Farombi EO, Rosemberg DB. Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic- and purinergic signaling-related parameters in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113635. [PMID: 35605321 DOI: 10.1016/j.ecoenv.2022.113635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.
Collapse
Affiliation(s)
- Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ayodeji A Olabiyi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Functional Food and Nutraceuticals Unit, Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, Nigeria
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Giovana R Sabadin
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria R C Schetinger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
11
|
Zhang W, Liu Z, Zhou Y, Lai C, Sun B, He M, Zhai Z, Wang J, Wang Q, Wang X, Wang F, Pan Y. Elucidating the molecular mechanisms of perfluorooctanoic acid-serum protein interactions by structural mass spectrometry. CHEMOSPHERE 2022; 291:132945. [PMID: 34798108 DOI: 10.1016/j.chemosphere.2021.132945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent environmental pollutant and will continually accumulate in blood due to its chemical inertness and strong interaction with serum proteins, especially serum albumin (SA), inducing highly adverse health risks. However, the molecular mechanisms of dynamic interactions between PFOA with serum proteins remain unclear, limiting the development of potential therapeutic strategies. Herein, we developed an integrated structural strategy to systematically profile the molecular details of dynamic interactions among PFOA, SA, and β-cyclodextrin (β-CD) by combing native mass spectrometry (nMS), lysine reactivity profiling (LRP), and molecular docking (MD) simulation. The SA site 1, site 2 pockets, and cleft nearby are observed as the primary interaction regions of PFOA. Further, β-CD can disrupt the PFOA combinations with bovine SA regions around sites Lys20, Lys280, Lys350, and Lys431-Lys439, with an overall reversing efficiency of about 26% at an identical concentration to PFOA. The interactome of PFOA with complex human serum proteins is globally profiled with molecular interaction details, including human serum albumin, apolipoprotein A-I, alpha-2-macroglobulin, and complement C3. Our results reveal molecular insights into the detail of the interaction between PFOA and serum proteins, beneficial to understanding PFOA toxicology.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China; CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ye Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min He
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyang Zhai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jian Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Wang
- The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
12
|
Lydon CA, Mejia-Fava J, Collado-Vides L, Eskelinen H, Berry JP. Identification of apparently neurotoxic metabolites from assemblages of marine filamentous cyanobacteria associated with the intoxication of captive bottlenose dolphins (Tursiops truncatus) in the Florida Keys. CHEMOSPHERE 2022; 288:132423. [PMID: 34600015 DOI: 10.1016/j.chemosphere.2021.132423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Intoxications of captive bottlenose dolphins (Tursiops truncatus) in the Florida Keys have been linked to observed interactions with marine macrophytic algal and cyanobacterial communities within enclosures. Taxonomic characterization of these communities coupled, in turn, to available observational data collected during intoxication events point to a contribution of filamentous cyanobacterial assemblages comprised of members of the polyphyletic genus, Lyngbya sensu lato. To identify toxic metabolites possibly relevant to these intoxications, chemical screening for known neurotoxins from cyanobacteria, as well as other regionally relevant harmful algal bloom (HAB) taxa, was combined with toxicity testing, and subsequent bioassay-guided fractionation, employing early life stages (i.e., embryos and larvae) of zebrafish (Danio rerio) as a well-established aquatic vertebrate toxicological model. Chemical analyses did not detect (within analytical limits) any of the known algal or cyanobacterial neurotoxins. Toxicity testing, alongside bioassay-guided fractionation, however, identified several chemical fractions with a range of potentially relevant bioactivities in both zebrafish embryos and post-hatch larvae including, in particular, behavioral (e.g., aberrant swimming) and physiological (e.g., altered heart rate) endpoints indicative of possible neurotoxicity, and subsequent chemical characterization of fractions suggested a contribution of the previously identified bioactive metabolite, eudesmacarbonate, in the observed toxicity. Comparative toxicological assessment with PbTx-2, as a positive control for neurotoxicity in the zebrafish model, further supported neurotoxic activity of cyanobacterial metabolites potentially relevant, in turn, to a contribution of these metabolites to dolphin intoxications. These findings suggest, in general, that marine zoological facilities may be affected by regional HABs, and assessments of potentially toxigenic algae and cyanobacteria should be included in management strategies in these facilities.
Collapse
Affiliation(s)
- Christina A Lydon
- Department of Chemistry and Biochemistry, Coastlines and Oceans Division, Institute of Environment, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA
| | | | - Ligia Collado-Vides
- Department of Biological Sciences, Coastlines and Oceans Division, Institute of Environment, Florida International University, 11200 SW 8th Street, Miami, FL, 33199, USA
| | - Holli Eskelinen
- Dolphins Plus Marine Mammal Responder, 31 Corinne Place, Key Largo, FL, 33037, USA
| | - John P Berry
- Department of Chemistry and Biochemistry, Coastlines and Oceans Division, Institute of Environment, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA.
| |
Collapse
|
13
|
Annunziato M, Eeza MNH, Bashirova N, Lawson A, Matysik J, Benetti D, Grosell M, Stieglitz JD, Alia A, Berry JP. An integrated systems-level model of the toxicity of brevetoxin based on high-resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) metabolic profiling of zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149858. [PMID: 34482148 DOI: 10.1016/j.scitotenv.2021.149858] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Brevetoxins (PbTx) are a well-recognized group of neurotoxins associated with harmful algal blooms, and specifically recurrent "Florida Red Tides," in marine waters that are linked to impacts on both human and ecosystem health including well-documented "fish kills" and marine mammal mortalities in affected coastal waters. Understanding mechanisms and pathways of PbTx toxicity enables identification of relevant biomarkers to better understand these environmental impacts, and improve monitoring efforts, in relation to this toxin. Toward a systems-level understanding of toxicity, and identification of potential biomarkers, high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was utilized for metabolic profiling of zebrafish (Danio rerio) embryos, as an established toxicological model, exposed to PbTx-2 (the most common congener in marine waters). Metabolomics studies were, furthermore, complemented by an assessment of the toxicity of PbTx-2 in embryonic stages of zebrafish and mahi-mahi (Coryphaena hippurus), the latter representing an ecologically and geographically relevant marine species of fish, which identified acute embryotoxicity at environmentally relevant (i.e., parts-per-billion) concentrations in both species. HRMAS NMR analysis of intact zebrafish embryos exposed to sub-lethal concentrations of PbTx-2 afforded well-resolved spectra, and in turn, identification of 38 metabolites of which 28 were found to be significantly altered, relative to controls. Metabolites altered by PbTx-2 exposure specifically included those associated with (1) neuronal excitotoxicity, as well as associated neural homeostasis, and (2) interrelated pathways of carbohydrate and energy metabolism. Metabolomics studies, thereby, enabled a systems-level model of PbTx toxicity which integrated multiple metabolic, molecular and cellular pathways, in relation to environmentally relevant concentrations of the toxin, providing insight to not only targets and mechanisms, but potential biomarkers pertinent to environmental risk assessment and monitoring strategies.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Muhamed N H Eeza
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Narmin Bashirova
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Daniel Benetti
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - John D Stieglitz
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA
| | - A Alia
- Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333 Leiden, the Netherlands.
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA; Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA.
| |
Collapse
|
14
|
Gebreab KY, Eeza MNH, Bai T, Zuberi Z, Matysik J, O'Shea KE, Alia A, Berry JP. Comparative toxicometabolomics of perfluorooctanoic acid (PFOA) and next-generation perfluoroalkyl substances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114928. [PMID: 32540561 DOI: 10.1016/j.envpol.2020.114928] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 05/31/2020] [Indexed: 05/09/2023]
Abstract
Owing to environmental health concerns, a number of per- and polyfluoroalkyl substances (PFAS) have been phased-out, and increasingly replaced by various chemical analogs. Most prominent among these replacements are numerous perfluoroether carboxylic acids (PFECA). Toxicity, and environmental health concerns associated with these next-generation PFAS, however, remains largely unstudied. The zebrafish embryo was employed, in the present study, as a toxicological model system to investigate toxicity of a representative sample of PFECA, alongside perfluorooctanoic acid (PFOA) as one of the most widely used, and best studied, of the "legacy" PFAS. In addition, high-resolution magic angle spin (HRMAS) NMR was utilized for metabolic profiling of intact zebrafish embryos in order to characterize metabolic pathways associated with toxicity of PFAS. Acute embryotoxicity (i.e., lethality), along with impaired development, and variable effects on locomotory behavior, were observed for all PFAS in the zebrafish model. Median lethal concentration (LC50) was significantly correlated with alkyl chain-length, and toxic concentrations were quantitatively similar to those reported previously for PFAS. Metabolic profiling of zebrafish embryos exposed to selected PFAS, specifically including PFOA and two representative PFECA (i.e., GenX and PFO3TDA), enabled elaboration of an integrated model of the metabolic pathways associated with toxicity of these representative PFAS. Alterations of metabolic profiles suggested targeting of hepatocytes (i.e., hepatotoxicity), as well as apparent modulation of neural metabolites, and moreover, were consistent with a previously proposed role of mitochondrial disruption and peroxisome proliferator-activated receptor (PPAR) activation as reflected by dysfunctions of carbohydrate, lipid and amino acid metabolism, and consistent with a previously proposed contribution of PFAS to metabolic syndrome. Taken together, it was generally concluded that toxicity of PFECA is quantitatively and qualitatively similar to PFOA, and these analogs, likewise, represent potential concerns as environmental toxicants.
Collapse
Affiliation(s)
- Kiflom Y Gebreab
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Tianyu Bai
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Zain Zuberi
- The School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany; Leiden Institute of Chemistry, Leiden University, 2333, Leiden, the Netherlands
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA.
| |
Collapse
|
15
|
Pecquet AM, Maier A, Kasper S, Sumanas S, Yadav J. Exposure to perfluorooctanoic acid (PFOA) decreases neutrophil migration response to injury in zebrafish embryos. BMC Res Notes 2020; 13:408. [PMID: 32867820 PMCID: PMC7460781 DOI: 10.1186/s13104-020-05255-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Perfluorooctanoic acid (PFOA) is a ubiquitous environmental contaminant and a known immune suppressant in humans and experimental animal models. Studies on PFOA have focused on suppression of the adaptive immune response; however, little is known of the impact on innate immunity, especially during embryogenesis. Therefore, we utilized the zebrafish chemotaxis assay coupled with in situ hybridization for myeloperoxidase expression to determine the effects of PFOA exposure on neutrophil migration in the developing zebrafish embryo. Zebrafish embryos are a well-established in vivo model that exhibit high homology with the development of human innate immunity. Results Treatment of zebrafish with increasing concentrations of PFOA identified the lethal concentration in 50% of the embryos (LC50) to be 300 mg/L. Utilizing the zebrafish chemotaxis assay, this study showed that wounding induced significant neutrophil migration to the site of injury, and that neutrophil number in the wound region was significantly reduced in response to 48-h PFOA exposure (well below doses causing acute mortality). This study demonstrates that the developing embryo is sensitive to PFOA exposure and that PFOA can modify the innate immune system during embryonic development. These results lay the groundwork for future investigation on the mechanisms underlying PFOA-induced developmental immunotoxicity.
Collapse
Affiliation(s)
- Alison M Pecquet
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Andrew Maier
- Cardno ChemRisk, 9999 Carver Road, Suite 125, Blue Ash, OH, 45242, USA
| | - Susan Kasper
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Jagjit Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, 160 Panzeca Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
16
|
Faisal Z, Garai E, Csepregi R, Bakos K, Fliszár-Nyúl E, Szente L, Balázs A, Cserháti M, Kőszegi T, Urbányi B, Csenki Z, Poór M. Protective effects of beta-cyclodextrins vs. zearalenone-induced toxicity in HeLa cells and Tg(vtg1:mCherry) zebrafish embryos. CHEMOSPHERE 2020; 240:124948. [PMID: 31726616 DOI: 10.1016/j.chemosphere.2019.124948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Zearalenone is a xenoestrogenic mycotoxin produced by Fusarium species. High exposure with zearalenone induces reproductive disorders worldwide. Cyclodextrins are ring-shaped host molecules built up from glucose units. The apolar cavity of cyclodextrins can entrap so-called guest molecules. The formation of highly stable host-guest type complexes with cyclodextrins can decrease the biological effect of the guest molecule. Therefore, cyclodextrins may be suitable to decrease the toxicity of some xenobiotics even after the exposure. In this study, the protective effect of beta-cyclodextrins against zearalenone-induced toxicity was investigated in HeLa cells and zebrafish embryos. Fluorescence spectroscopic studies demonstrated the formation of stable complexes of zearalenone with sulfobutyl-, methyl-, and succinyl-methyl-substituted beta-cyclodextrins at pH 7.4 (K = 1.4-4.7 × 104 L/mol). These chemically modified cyclodextrins considerably decreased or even abolished the zearalenone-induced loss of cell viability in HeLa cells and mortality in zebrafish embryos. Furthermore, the sublethal effects of zearalenone were also significantly alleviated by the co-treatment with beta-cyclodextrins. To test the estrogenic effect of the mycotoxin, a transgenic bioindicator zebrafish model (Tg(vtg1:mCherry)) was also applied. Our results suggest that the zearalenone-induced vitellogenin production is partly suppressed by the hepatotoxicity of zearalenone in zebrafish. This study demonstrates that the formation of stable zearalenone-cyclodextrin complexes can strongly decrease or even abolish the zearalenone-induced toxicity, both in vitro and in vivo. Therefore, cyclodextrins appear as promising new mycotoxin binders.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Edina Garai
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Rita Csepregi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Katalin Bakos
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory, Ltd., Illatos út 7, H-1097, Budapest, Hungary.
| | - Adrienn Balázs
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary; Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság út 13, H-7624, Pécs, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Zsolt Csenki
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Páter Károly u. 1, H-2100, Gödöllő, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624, Pécs, Hungary.
| |
Collapse
|
17
|
Weiss-Errico MJ, Miksovska J, O’Shea KE. β-Cyclodextrin Reverses Binding of Perfluorooctanoic Acid to Human Serum Albumin. Chem Res Toxicol 2018; 31:277-284. [DOI: 10.1021/acs.chemrestox.8b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mary Jo Weiss-Errico
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin E. O’Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|