1
|
Park H, Hong T, An G, Park J, Song G, Lim W. Bifenox induces hepatotoxicity and vascular toxicity in zebrafish embryos via ROS production and alterations in signaling pathways. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109918. [PMID: 38583696 DOI: 10.1016/j.cbpc.2024.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Existing evidence shows that currently used pesticides pose toxicological risks to exposed wildlife. Chemically, bifenox belongs to diphenyl ethers, a well-known group of herbicides. Its mechanism of action primarily involves inducing lipid peroxidation and blocking protoporphyrinogen oxidases. Toxicity of diphenyl ether herbicides has been elucidated in animal cells; however, in vivo toxicological evaluations of bifenox are required to determine its unexpected effects. This study aimed to determine the negative effects of bifenox, and its effects on higher eukaryotes. We found that early stages of zebrafish embryo exposed to bifenox demonstrated increased mortality and physiological defects, based on the LC50 value. Bifenox severely inhibited blood vessel growth by reducing key elements of complex connectivity; fluorescently tagged transgenic lines (fli1a:EGFP) showed morphological changes. Additionally, transgenic lines that selectively identified hepatocytes (fabp10a:DsRed) showed reduced fluorescence, indicating that bifenox may inhibit liver development. To evaluate the level of oxidative stress, we used 2',7'-dichlorofluorescein diacetate (DCFH-DA) probes in zebrafish embryos to identify the underlying mechanisms causing developmental damage. Our findings demonstrate that exposure to bifenox causes abnormalities in the hepatic and cardiovascular systems during zebrafish embryogenesis. Therefore, this study provides new information for the evaluation of toxicological risks of bifenox in vertebrates.
Collapse
Affiliation(s)
- Hahyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Maleski ALA, Rosa JGS, Bernardo JTG, Astray RM, Walker CIB, Lopes-Ferreira M, Lima C. Recapitulation of Retinal Damage in Zebrafish Larvae Infected with Zika Virus. Cells 2022; 11:1457. [PMID: 35563763 PMCID: PMC9100881 DOI: 10.3390/cells11091457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Zebrafish are increasingly being utilized as a model to investigate infectious diseases and to advance the understanding of pathogen-host interactions. Here, we take advantage of the zebrafish to recapitulate congenital ZIKV infection and, for the first time, demonstrate that it can be used to model infection and reinfection and monitor anti-viral and inflammatory immune responses, as well as brain growth and eye abnormalities during embryonic development. By injecting a Brazilian strain of ZIKV into the yolk sac of one-cell stage embryos, we confirmed that, after 72 h, ZIKV successfully infected larvae, and the physical condition of the virus-infected hosts included gross morphological changes in surviving embryos (84%), with a reduction in larval head size and retinal damage characterized by increased thickness of the lens and inner nuclear layer. Changes in locomotor activity and the inability to perceive visual stimuli are a result of changes in retinal morphology caused by ZIKV. Furthermore, we demonstrated the ability of ZIKV to replicate in zebrafish larvae and infect new healthy larvae, impairing their visual and neurological functions. These data reinforce the deleterious activity of ZIKV in the brain and visual structures and establish the zebrafish as a model to study the molecular mechanisms involved in the pathology of the virus.
Collapse
Affiliation(s)
- Adolfo Luis Almeida Maleski
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Paulo 05503-009, Brazil;
| | - Joao Gabriel Santos Rosa
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | - Jefferson Thiago Gonçalves Bernardo
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | | | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Paulo 05503-009, Brazil;
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (A.L.A.M.); (J.G.S.R.); (J.T.G.B.); (M.L.-F.)
| |
Collapse
|
3
|
Moraes ACN, Shah S, Magalhães VF, Habibi HR. Cylindrospermopsin impairs zebrafish (Danio rerio) embryo development. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105567. [PMID: 35123182 DOI: 10.1016/j.marenvres.2022.105567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Cyanotoxins are among common contaminants that can impair human, animal, and environmental health. Cylindrospermopsin (CYN) is an abundant form of cyanotoxins elevated following algal bloom in the water worldwide. Previous studies have described CYN effects on several organs in mammals. However, little is known about its toxicity mechanisms in other vertebrates. This study aims to characterize the developmental effects of CYN using zebrafish larvae as an aquatic model organism. A wide range of CYN concentrations (0-2000 μg/L) was tested using a morphometric approach for survival, hatching, various growth and developmental abnormalities. We also investigated the expression of genes related to oxidative stress, osmoregulation, and thyroid function. Exposure to CYN resulted in decreased growth, increased developmental abnormalities such as pericardial and yolk sac edema as well as swim bladder absence. In addition, CYN increased tr1a, and decreased dio1 and dio3 transcript levels which are involved in thyroid-mediated function. It also increased transcript levels related to oxidative stress, including hsp70, ahr1a, cyp1a, gpx and cat. Lastly, CYN exposure increased aqp3a and decreased dab2, which are involved in osmoregulation with a threshold of 10 μg/L. The present study demonstrates multiple effects of exposure to environmentally relevant CYN concentrations in zebrafish embryos.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil; Department of Biological Science, University of Calgary, Canada
| | - S Shah
- Department of Biological Science, University of Calgary, Canada
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Brazil
| | - H R Habibi
- Department of Biological Science, University of Calgary, Canada.
| |
Collapse
|
4
|
Seni-Silva AC, Maleski ALA, Souza MM, Falcao MAP, Disner GR, Lopes-Ferreira M, Lima C. Natterin-like depletion by CRISPR/Cas9 impairs zebrafish (Danio rerio) embryonic development. BMC Genomics 2022; 23:123. [PMID: 35151271 PMCID: PMC8840632 DOI: 10.1186/s12864-022-08369-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Natterin protein family was first discovered in the venom of the medically significant fish Thalassophryne nattereri, and over the last decade natterin-like genes have been identified in various organisms, notably performing immune-related functions. Previous findings support natterin-like genes as effector defense molecules able to activate multiprotein complexes driving the host innate immune response, notably due to the pore-forming function of the aerolysin superfamily members. Herein, employing a combination of the CRISPR/Cas9 depletion system, phenotype-based screening, and morphometric methods, we evaluated the role of one family member, LOC795232, in the embryonic development of zebrafish since it might be implicated in multiple roles and characterization of the null mutant is central for analysis of gene activity. Results Multiple sequence alignment revealed that the candidate natterin-like has the highest similarity to zebrafish aep1, a putative and better characterized fish-specific defense molecule from the same family. Compared to other species, zebrafish have many natterin-like copies. Whole-mount in situ hybridization confirmed the knockout and mutant embryos exhibited epiboly delay, growth retardation, yolk sac and heart edema, absent or diminished swim bladder, spinal defects, small eyes and head, heart dysfunction, and behavioral impairment. As previously demonstrated, ribonucleoproteins composed of Cas9 and duplex guide RNAs are effective at inducing mutations in the F0 zebrafish. Conclusions The considerably high natterin-like copies in zebrafish compared to other species might be due to the teleost-specific whole genome duplication and followed by subfunctionalization or neofunctionalization. In the present work, we described some of the natterin-like features in the zebrafish development and infer that natterin-like proteins potentially contribute to the embryonary development and immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08369-z. The Natterin family was discovered in the venom of the fish Thalassophryne nattereri. The zebrafish genome encodes eleven natterin-like genes. Natterin-like might be a novel fish-specific defense molecule. Natterin-like proteins are thought to be pore-forming molecules. Reverse genetic study and phenotypic characterization suggests natterin-like genes may have roles in zebrafish development.
Collapse
|
5
|
Pimentel Falcao MA, Banderó Walker CI, Rodrigo Disner G, Batista-Filho J, Silva Soares AB, Balan-Lima L, Lima C, Lopes-Ferreira M. Knockdown of miR-26a in zebrafish leads to impairment of the anti-inflammatory function of TnP in the control of neutrophilia. FISH & SHELLFISH IMMUNOLOGY 2021; 114:301-310. [PMID: 33984485 DOI: 10.1016/j.fsi.2021.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Our recent data show the valuable potential of TnP for the development of a new and safe anti-inflammatory drug due to its ability to control the traffic and activation of leukocytes in response to inflammation. Although there is considerable knowledge surrounding the cellular mechanisms of TnP, less is known about the mechanistic molecular role of TnP underlying its immunomodulatory functions. Here, we conducted investigations to identify whether miRNAs could be one of the molecular bases of the therapeutic effect of TnP. Using a zebrafish model of neutrophilic inflammation with a combination of genetic gain- and loss-of-function approaches, we showed that TnP treatment was followed by up-regulation of only four known miRNAs, and mature dre-miR-26a-1, herein referred just as miR-26a was the first most highly expressed. The knockdown of miR-26a ubiquitously resulted in a significant reduction of miR-26a in embryos, accompanied by impaired TnP immunomodulatory function observed by the loss of the control of the removal of neutrophils in response to inflammation, while the overexpression increased the inhibition of neutrophilic inflammation promoted by TnP. The striking importance of miR-26a was confirmed when rescue strategies were used (morpholino and mimic combination). Our results identified miR-26a as an essential molecular regulator of the therapeutic action of TnP, and suggest that miR-26a or its targets could be used as promising therapeutic candidates for enhancing the resolution of inflammation.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - João Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Post-Graduation Program of Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Beatriz Silva Soares
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil.
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| |
Collapse
|
6
|
Photocatalytic Degradation of Sulfolane Using a LED-Based Photocatalytic Treatment System. Catalysts 2021. [DOI: 10.3390/catal11050624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sulfolane is an emerging industrial pollutant detected in the environments near many oil and gas plants in North America. So far, numerous advanced oxidation processes have been investigated to treat sulfolane in aqueous media. However, there is only a few papers that discuss the degradation of sulfolane using photocatalysis. In this study, photocatalytic degradation of sulfolane using titanium dioxide (TiO2) and reduced graphene oxide TiO2 composite (RGO-TiO2) in a light-emitting diode (LED) photoreactor was investigated. The impact of different waters (ultrapure water, tap water, and groundwater) and type of irradiation (UVA-LED and mercury lamp) on photocatalytic degradation of sulfolane were also studied. In addition, a reusability test was conducted for the photocatalyst to examine the degradation of sulfolane in three consecutive cycles with new batches of sulfolane-contaminated water. The results show that LED-based photocatalysis was effective in degrading sulfolane in waters even after three photocatalytic cycles. UVA-LEDs displayed more efficient use of photon energy when compared with the mercury lamps as they have a narrow emission spectrum coinciding with the absorption of TiO2. The combination of UVA-LED and TiO2 yielded better performance than UVA-LED and RGO-TiO2 for the degradation of sulfolane. Much lower sulfolane degradation rates were observed in tap water and groundwater than ultrapure water.
Collapse
|
7
|
Lin CW, Liu SH, Wu CF, Chang SH. Critical factors for enhancing the bioremediation of a toxic pollutant at high concentrations in groundwater: Toxicity evaluation, degrader tolerance, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111487. [PMID: 33049609 DOI: 10.1016/j.jenvman.2020.111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Groundwater near refinery and natural gas plants often contain elevated concentrations of toxic sulfolane. Studies on any concentration of sulfolane are limited. Column experiment was conducted to investigate the effects of adding a low dose of H2O2 and nutrient on bioremediation. Vibrio fischeri light inhibition test was used evaluate the toxicity of effluents. The continuous column experiment conditions were sulfolane at 100 mg L-1, dissolved oxygen at 7 mg L-1, absence of phosphorus, and very short hydraulic retention time (7.9 h). A low dose of H2O2 (5.88 mM) enhanced the sulfolane (27.1%) and COD removal (11.8%) in comparison with the control set. Adding nutrient increased bicinchoninic acid protein assay levels, sulfolane removal (99.6%) and COD removal (80.3%). Addition of both H2O2 and nutrient further improved COD removal (90.3%) and COD/sulfolane ratio (0.90) and toxicity removal (Vibrio fischeri light inhibition ratio < 1%). Batch experiment indicated the degraders tolerated sulfolane up to 400 mg L-1. The DGGE method and dendrogram analysis were utilized to investigate the changes of degrader community structure.
Collapse
Affiliation(s)
- Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan; National Yunlin University of Science and Technology, Feng Tay Distinguished Professor, Taiwan
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Cheng-Fang Wu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan
| | - Shih-Hsien Chang
- Department of Public Health, Chung-Shan Medical University, Taichung, 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
8
|
Dharwadkar S, Yu L, Achari G. Enhancement of LED based photocatalytic degradation of sulfolane by integration with oxidants and nanomaterials. CHEMOSPHERE 2021; 263:128124. [PMID: 33297113 DOI: 10.1016/j.chemosphere.2020.128124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
In this study, oxidants and nanomaterials were used to improve titanium dioxide based photocatalytic degradation of sulfolane. Hydrogen peroxide (H2O2), sodium persulfate (SPS) and ozone (O3) were the oxidants studied and carbon nanotubes (CNT) and nanosized zero valent iron (nZVI) were used as the nanomaterials. The impact of these oxidants and nanomaterials was evaluated at various dosages in both Milli-Q water and groundwater. The results indicate that with a suitable dose of oxidants or nanomaterials, photocatalytic degradation of sulfolane in Milli-Q water can be enhanced. The addition of ozone contributed to a significant increase in sulfolane degradation rate in Milli-Q water. The experiments conducted in groundwater showed that oxidants (H2O2, SPS and O3) increased the degradation of sulfolane while the nanomaterials (CNT and nZVI) impeded sulfolane degradation in groundwater.
Collapse
Affiliation(s)
- Sripriya Dharwadkar
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Linlong Yu
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Gopal Achari
- Department of Civil Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Temperature-Related Corrosion Resistance of AISI 1010 Carbon Steel in Sulfolane. MATERIALS 2020; 13:ma13112563. [PMID: 32512801 PMCID: PMC7321492 DOI: 10.3390/ma13112563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/02/2022]
Abstract
Sulfolane-induced corrosion can lead to severe impairment in industrial systems. Therefore, determination of solvent corrosivity is valid. Under standard conditions, pure sulfolane is considered to be thermally stable and chemically inert, hence non-aggressive towards carbon/stainless steel. Unfortunately, the sulfolane-evoked corrosion of the industrial installations is observed for sulfolane-based systems polluted by small quantities of oxygen, water and some oxidizing agents. Moreover, sulfolane decomposition with formation of corrosive (by-)products can be escalated by some process parameters, e.g., temperature. The main objective of this study was to determine the corrosion resistance of AISI 1010 steel immersed in sulfolane at temperatures ranging from 25 to 230 °C. Evaluation of the corrosion damage was carried out using electrochemical techniques and scanning probe/electron microscopy, respectively. The general corrosion tendency, corrosion rate and surface corrosion degree were taken into account as well. It was noticed that the corrosion rate linearly increases with the enhancement of sulfolane temperature. Moreover, the interfacial reaction of steel with sulfolane resulted in the formation of corrosion product layer, which is a physical barrier between the corrosive environment and steel improving corrosion resistance of the latter. In fact, the increment of the sulfolane temperature caused a gradual breakdown of the protective layer and the increase in the corrosion degree of the investigated steel. Finally, it was found that the corrosion degree doubles approximately every 42 °C.
Collapse
|
10
|
A Field Pilot Study on Treating Groundwater Contaminated with Sulfolane Using UV/H2O2. WATER 2020. [DOI: 10.3390/w12041200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sulfolane is an emerging contaminant in the groundwater and soil nearby gas plants, which has attracted much attention from many researchers and regulatory agencies in the past ten years. In this paper, a field pilot-scale ultraviolet (UV)/hydrogen peroxide (H2O2) system was investigated for treating sulfolane contaminated groundwater. Different groundwater, as well as different operational parameters such as influent sulfolane concentration, H2O2 dosage, and water flow rates, were studied. The results showed that a pilot-scale UV/H2O2 system can successfully treat sulfolane contaminated groundwater in the field, although the presence of iron and other groundwater limited the process efficiency. The lowest electrical energy per order of reduction for treating sulfolane in groundwater by using the pilot-scale UV/H2O2 system was 1.4 kWh m−3 order−1. The investigated sulfolane initial concentrations and the water flow rates did not impact the sulfolane degradation. The enhancement of sulfolane degradation in an open reservoir by adding ozone was not observed in this study. Furthermore, an operational cost model was formulated to optimize the dosage of H2O2, and a stepwise procedure was developed to determine the power necessary of the UV unit.
Collapse
|