1
|
Colorimetric Detection of Organophosphate Pesticides Based on Acetylcholinesterase and Cysteamine Capped Gold Nanoparticles as Nanozyme. SENSORS 2021; 21:s21238050. [PMID: 34884060 PMCID: PMC8659924 DOI: 10.3390/s21238050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023]
Abstract
Organophosphates (OPs) are neurotoxic agents also used as pesticides that can permanently block the active site of the acetylcholinesterase (AChE). A robust and sensitive detection system of OPs utilising the enzyme mimic potential of the cysteamine capped gold nanoparticles (C-AuNPs) was developed. The detection assay was performed by stepwise addition of AChE, parathion ethyl (PE)-a candidate OP, acetylcholine chloride (ACh), C-AuNPs, and 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the buffer solution. The whole sensing protocol completes in 30–40 min, including both incubations. The Transmission Electron Microscopy (TEM) results indicated that the NPs are spherical and have an average size of 13.24 nm. The monomers of C-AuNPs exhibited intense catalytic activity (nanozyme) for the oxidization of TMB, revealed by the production of instant blue colour and confirmed by a sharp peak at 652 nm. The proposed biosensor’s detection limit and linear ranges were 5.8 ng·mL−1 and 11.6–92.8 ng·mL−1, respectively, for PE. The results strongly advocate that the suggested facile colorimetric biosensor may provide an excellent platform for on-site monitoring of OPs.
Collapse
|
2
|
Khalifa SAM, Elashal MH, Yosri N, Du M, Musharraf SG, Nahar L, Sarker SD, Guo Z, Cao W, Zou X, Abd El-Wahed AA, Xiao J, Omar HA, Hegazy MEF, El-Seedi HR. Bee Pollen: Current Status and Therapeutic Potential. Nutrients 2021; 13:nu13061876. [PMID: 34072636 PMCID: PMC8230257 DOI: 10.3390/nu13061876] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Bee pollen is a combination of plant pollen and honeybee secretions and nectar. The Bible and ancient Egyptian texts are documented proof of its use in public health. It is considered a gold mine of nutrition due to its active components that have significant health and medicinal properties. Bee pollen contains bioactive compounds including proteins, amino acids, lipids, carbohydrates, minerals, vitamins, and polyphenols. The vital components of bee pollen enhance different bodily functions and offer protection against many diseases. It is generally marketed as a functional food with affordable and inexpensive prices with promising future industrial potentials. This review highlights the dietary properties of bee pollen and its influence on human health, and its applications in the food industry.
Collapse
Affiliation(s)
- Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
- Correspondence: (S.A.M.K.); (H.R.E.-S.); Tel.: +46-700-101-113 (S.A.M.K.); +46-700-434-343 (H.R.E.-S.)
| | - Mohamed H. Elashal
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (M.H.E.); (N.Y.)
| | - Nermeen Yosri
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (M.H.E.); (N.Y.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.G.); (X.Z.)
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116024, China;
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic;
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.G.); (X.Z.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China;
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.G.); (X.Z.)
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E-32004 Ourense, Spain;
| | - Hany A. Omar
- College of Pharmacy, University of Sharjah, Sharjah, P.O.Box 27272, United Arab Emirates;
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Hesham R. El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; (M.H.E.); (N.Y.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
- Correspondence: (S.A.M.K.); (H.R.E.-S.); Tel.: +46-700-101-113 (S.A.M.K.); +46-700-434-343 (H.R.E.-S.)
| |
Collapse
|
3
|
Sultana Z, Khan MM, Mostakim GM, Moniruzzaman M, Rahman MK, Shahjahan M, Islam MS. Studying the effects of profenofos, an endocrine disruptor, on organogenesis of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20659-20667. [PMID: 33405136 DOI: 10.1007/s11356-020-11944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Profenofos is an endocrine-disrupting chemical that can enter into the aquatic ecosystem either through surface runoff or through percolation of a toxicant from the soil. In order to clarify the effect of profenofos on the developmental stages of zebrafish, the embryos were treated with serial dilutions of profenofos (0%, 10%, 25%, and 50% of LC50). Embryos were treated with profenofos for 7 days or until hatching. The toxic endpoints assessed include hatching time, survival, malformation, and heartbeats of the embryos. In a 96-h test on zebrafish embryos, the LC50 of profenofos was 0.057 mg/L. Profenofos considerably lowered survival, increased abnormalities at different ontogenetic stages, and developed malformations of different organs in a concentration-dependent fashion. The identified developmental malformations were fluid accumulation, impaired jaw, short tail, ruptured pectoral and caudal fin, curved body, thin yolk sac tube, and deformed heart. The way of looping arrangement of the heart at the early stage of embryos was significantly influenced by the higher concentration of profenofos. Heartbeat is also reduced significantly in a concentration-dependent fashion. The results show that the zebrafish are susceptible to profenofos even at lower concentrations in the initial stage. Therefore, when used in agricultural areas adjacent to the aquatic environment, endocrine-disrupting chemicals should be used in an appropriate manner.
Collapse
Affiliation(s)
- Zakia Sultana
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mst Mansura Khan
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Golam Mohammod Mostakim
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Moniruzzaman
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Khalilur Rahman
- Freshwater Station, Bangladesh Fisheries Research Institute (BFRI), Mymensingh, 2201, Bangladesh
| | - Md Shahjahan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - M Sadiqul Islam
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
4
|
Wahyuni EA, Lin HD, Lu CW, Kao CM, Chen SC. The cytotoxicity and genotoxicity of single and combined fenthion and terbufos treatments in human liver cells and zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143597. [PMID: 33221015 DOI: 10.1016/j.scitotenv.2020.143597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
The mechanism of genotoxicity of the individual and combined pesticides of terbufos and fenthion were evaluated using HepG2 cells and zebrafish embryos. We determined genotoxicity by neutral comet assay and phosphorylation of H2AX (γH2AX), which indicated that cells treated with terbufos and/or fenthion caused DNA double-strand breaks (DSBs). The combination of these pesticides at the equimolar concentration (40 μM) exhibited less toxicity, genotoxicity, and did not impact DNA homologous recombination (HR) repair activity compare to terbufos or fenthion alone treatment. In HepG2 cells, terbufos, fenthion and their combination decreased only Xrcc2 expression (one of DNA HR repair genes). Moreover, the combined pesticides decreased Xrcc6 expression (one of DNA non-homologous end joining (NHEJ) repair genes). In addition, only terbufos or fenthion decreased XRCC2 protein expression, while Ku70 was impacted in all of the treated cells irrespective of up or down regulation. In zebrafish embryos, only fenthion impaired HR genes (Rad51 and Rad18) expression at 24 h. After 48 h exposure to pesticides, the combined pesticides elevated HR genes (Rad51 and Xrcc2) expression while terbufos or fenthion inhibited the expression of these four genes (Rad51, Rad18, Xrcc2, Xrcc6). In addition, the hatching rate of zebrafish embryos with fenthion or the combined pesticide at 72 hpf was significantly impaired. Collectively, terbufos and/or fenthion in combining caused DSBs in HepG2 cells and zebrafish embryos. Moreover, the specific mechanism of combined pesticide both HepG2 and zebrafish embryos revealed antagonism interaction.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Jhongli, Taiwan; Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Che-Wei Lu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Chih Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan.
| |
Collapse
|