1
|
Mihelakis M, Ndikung J, Oelgeschläger M, Ertych N. The 4th dimension of in vitro systems - Time to level up. ENVIRONMENT INTERNATIONAL 2022; 164:107256. [PMID: 35472563 DOI: 10.1016/j.envint.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Various in vitro model systems have been established over the last decades to understand physiological processes, the causalities of diseases and the response of humans to environmental and industrial chemicals or therapeutic drugs. Common to all is a limited biological significance due to the impairment of functionality, for instance by the lack of physiological 3D tissue architecture or the loss of fundamental regulatory mechanisms including the circadian rhythm. The circadian rhythm is an adaption of living organisms to rhythmic environmental changes of the day-night cycle and coordinates behavior as well as various crucial physiological processes in a 24-hour pattern. Here, we discuss the impact of integrating circadian regulation in experimental approaches and toxicological assessments to improve the biological relevance of the obtained results. In particular, it is known for some time that an ongoing disruption of the circadian rhythmicity is associated with an increased risk for cardiovascular disease, metabolic dysfunction or cancer. In the context of health recovery, the importance of circadian control mechanism is recognized by chronopharmacological concepts to increase the efficiency of pharmacological treatment strategies. Despite the undeniable circadian dependency and the biological relevance of manifold cellular and molecular processes, the impact of circadian regulation is hardly considered in a wide range of biomedical and toxicological research areas. Reactivating the circadian regulation holds the promise to enhance the biological relevance and reliability of in vitro approaches. In the context of human health protection the implementation of a circadian regulation will subsequently generate advanced physiologically relevant in vitro approaches and allows an improved toxicological assessment of health risks. In addition, the establishment of circadian disruption as a novel toxicological endpoint will provide a better understanding of toxicological mode of actions of environmental and industrial chemicals or drugs and enlarge the knowledge of disease development.
Collapse
Affiliation(s)
- Melina Mihelakis
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Johanna Ndikung
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | - Norman Ertych
- German Federal Institute for Risk Assessment, German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277 Berlin, Germany.
| |
Collapse
|
2
|
Liu P, Zhou Y, Dong X, Zheng B, Liang B, Liang R, Liu Z, Li L, Gong P. ZNF165 Is Involved in the Regulation of Immune Microenvironment and Promoting the Proliferation and Migration of Hepatocellular Carcinoma by AhR/CYP1A1. J Immunol Res 2022; 2022:4446805. [PMID: 35692498 PMCID: PMC9177304 DOI: 10.1155/2022/4446805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
The strong tumorigenic capacity and treatment resistance made hepatocellular carcinoma (HCC) a huge threat to public health. ZNF165, the kruppel family of zinc-finger-containing transcription factors, is expressed in HCC; however, its specific role in HCC and the molecular mechanism are yet to be elucidated. In this study, we observed that ZNF165 was overexpressed in liver cancer tissues and the immune microenvironment; higher ZNF165 expression was correlated with lower overall survival in liver cancer patients. The ZNF165 knockdown in Bel7402 cells revealed the impairment of the tryptophan/kynurenine/AhR/CYP1A1 axis. Moreover, the knockdown of CYP1A1 significantly inhibited the proliferation and migration of HCC cells, and ZNF165 promoted the transcriptional activity of AhR by facilitating the nuclear translocation of CYP1A1. In conclusion, the present study argued that ZNF165 was highly expressed in liver tissues and the immune microenvironment. ZNF165 promoted the proliferation and migration of HCC cells by activating the tryptophan/kynurenine/AhR/CYP1A1 axis and promoting the expression of CYP1A1.
Collapse
Affiliation(s)
- Peng Liu
- Graduate School of Dalian Medical University, Dalian, Liaoning 116044, China
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Yan Zhou
- Department of Obstetrics & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
| | - Xin Dong
- Department of Emergency Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011 Liaoning, China
| | - Biao Zheng
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Bo Liang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Rui Liang
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Zhong Liu
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Li Li
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| | - Peng Gong
- Graduate School of Dalian Medical University, Dalian, Liaoning 116044, China
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Xueyuan Road 1098, 518055 Shenzhen, China
- Carson International Cancer Center & Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Xueyuan Road 1066, 518060 Shenzhen, China
| |
Collapse
|
3
|
Liu A, Li X, Hao Z, Cao J, Li H, Sun M, Zhang Z, Liang R, Zhang H. Alterations of DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells induced by benzo[a]pyrene. Toxicol Ind Health 2022; 38:127-138. [PMID: 35193440 DOI: 10.1177/07482337211069233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a known human carcinogen and plays a major function in the initiation of lung cancer at its first proximity. However, the underlying molecular mechanisms are less well understood. In this study, we investigated the impact of B[a]P treatment on the DNA methylation and mRNA levels of CYP1A1, GSTP1, and GSTM1 in human bronchial epithelial cells (16HBEs), and provide scientific evidence for the mechanism study on the carcinogenesis of B[a]P. We treated 16HBEs with DMSO or concentrations of B[a]P at 1, 2, and 5 mmol/L for 24 h, observed the morphological changes, determined the cell viability, DNA methylation, and mRNA levels of CYP1A1, GSTP1, and GSTM1. Compared to the DMSO controls, B[a]P treatment had significantly increased the neoplastic cell number and cell viability in 16HBEs at all three doses (1, 2, and 5 mmol/L), and had significantly reduced the CYP1A1 and GSTP1 DNA promoter methylation levels. Following B[a]P treatment, the GSTM1 promoter methylation level in 16HBEs was profoundly reduced at low dose group compared to the DMSO controls, yet it was significantly increased at both middle and high dose groups. The mRNA levels of CYP1A1, GSTP1, and GSTM1 were significantly decreased in 16HBEs following B[a]P treatment at all three doses. The findings demonstrate that B[a]P promoted cell proliferation in 16HBEs, which was possibly related to the altered DNA methylations and the inhibited mRNA levels in CYP1A1, GSTP1, and GSTM1.
Collapse
Affiliation(s)
- Aixiang Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Health Information Management, 74648Shanxi Medical University Fenyang College, Fenyang, Shanxi, China
| | - Xin Li
- Center of Disease Control and Prevention, 442190Taiyuan Iron and Steel Co Ltd, Taiyuan, Shanxi, China
| | - Zhongsuo Hao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingjing Cao
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huan Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Sun
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|