1
|
Mahdy A, Mostafa OMS, Aboueldahab MM, Nigm AH. Antiparasitic activity of Cerastes cerastes venom on Schistosoma mansoni infected mice. Exp Parasitol 2024; 268:108866. [PMID: 39617195 DOI: 10.1016/j.exppara.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study investigates whether Cerastes cerastes venom (CCV) administrated at different doses (3 and 6μg/mouse) and times (a week pre-infection, the first week post-infection, and the fifth week post-infection) possesses antischistosomal activity on Schistosoma mansoni infected mice. The results showed that treatment with half lethal dose (6 μg/mouse) of CCV, at various time schedules, led to a significant decrease in the total worm burden. However, quarter lethal dose (3μg/mouse) of CCV showed a significant decrease in the total worm burden only when administered a week pre-infection. The total number of deposited eggs by females of S. mansoni was significantly decreased in the liver and the intestine of mice treated with 3μg/mouse or 6μg/mouse CCV, associated with significant alterations in the oogram pattern with significant elevation in dead eggs levels and significant decrease in the number of mature eggs. Histological examinations illustrated a significant decrease in the number and diameter of hepatic granulomas in high dose (6μg/mouse) CCV-treated groups, while it was significant only a week pre-infection in low dose (3μg/mouse) CCV-treated groups. CCV also caused several tegumental changes in treated female and male worms, including loss of the normal surface architecture, tubercular destruction, loss of tubercles' spines, oedema, erosion, membrane blebbing, and swelling. S. mansoni-infected mice groups treated with CCV (6μg/mouse) a week before infection and at fifth week post-infection had, in all individuals up to a dilution of 1:1600, higher levels of antibodies against adult worm antigen. The current investigation found that C. cerastes venom has potential antischistosomal action in a time and dose-dependent manner (more enhanced antischistosomal effects at a dose of 6 μg and in the group treated in a week before infection), in addition to its potential immunomodulatory effect against schistosomiasis infection. More studies will be required to identify the venom's active ingredients that affect the host's immunology. This information could be used in the future to develop novel antischistosomal therapies.
Collapse
Affiliation(s)
- Asmaa Mahdy
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Osama M S Mostafa
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Marwa M Aboueldahab
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Ziegler KA, Ahles A, Dueck A, Esfandyari D, Pichler P, Weber K, Kotschi S, Bartelt A, Sinicina I, Graw M, Leonhardt H, Weckbach LT, Massberg S, Schifferer M, Simons M, Hoeher L, Luo J, Ertürk A, Schiattarella GG, Sassi Y, Misgeld T, Engelhardt S. Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease. Science 2023; 381:285-290. [PMID: 37471539 DOI: 10.1126/science.abn6366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/01/2023] [Indexed: 07/22/2023]
Abstract
Disruption of the physiologic sleep-wake cycle and low melatonin levels frequently accompany cardiac disease, yet the underlying mechanism has remained enigmatic. Immunostaining of sympathetic axons in optically cleared pineal glands from humans and mice with cardiac disease revealed their substantial denervation compared with controls. Spatial, single-cell, nuclear, and bulk RNA sequencing traced this defect back to the superior cervical ganglia (SCG), which responded to cardiac disease with accumulation of inflammatory macrophages, fibrosis, and the selective loss of pineal gland-innervating neurons. Depletion of macrophages in the SCG prevented disease-associated denervation of the pineal gland and restored physiological melatonin secretion. Our data identify the mechanism by which diurnal rhythmicity in cardiac disease is disturbed and suggest a target for therapeutic intervention.
Collapse
Affiliation(s)
- Karin A Ziegler
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Anne Dueck
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Dena Esfandyari
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Pauline Pichler
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
| | - Karolin Weber
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexander Bartelt
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard. T.H. Chan School of Public Health, Boston, MA, USA
| | - Inga Sinicina
- Institute of Legal Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Matthias Graw
- Institute of Legal Medicine, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Heinrich Leonhardt
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Ludwig T Weckbach
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Steffen Massberg
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Martina Schifferer
- DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich (TUM), Munich, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
| | - Jie Luo
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Ali Ertürk
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Gabriele G Schiattarella
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Yassine Sassi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Thomas Misgeld
- DZNE (German Center for Neurodegenerative Diseases), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University Munich (TUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
3
|
Soliman NS, Kandeil MA, Khalaf MM. "Cerastes snake venom as a promising approach in the management of complete Freund's adjuvant-induced rheumatoid arthritis in rats: Involvement of RANKL and JAK/STAT pathway". JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116577. [PMID: 37178980 DOI: 10.1016/j.jep.2023.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerastes cerastes is a snake found mainly in the Egyptian desert. Many studies were performed to explain the possible snake venom's pharmacological therapeutic effect in different autoimmune diseases. One of the most common auto-immune diseases is rheumatoid arthritis. Rheumatoid arthritis is characterized by a high release of pro-inflammatory and immune-modulatory cytokines. The reduction of these markers can indicate how effective is the administered drug. AIM OF THE STUDY This study aims to explore the potential pharmacological effects of cerastes venom in experimentally-induced RA in rats using Complete Freund's adjuvant - via different mechanisms - by assessing various tissue and serum parameters. MATERIALS AND METHODS The rats were assigned to negative control group, cerastes control group, positive control group, dexamethasone-treated group, infliximab-treated group, and cerastes-treated group. The study ended on the 20th day when serum and tissue samples were prepared for further evaluation of reduced glutathione, malondialdehyde, rheumatoid factor, tumor necrosis factor-α, interleukin-6, and nuclear factor kappa-light-chain-enhancer of activated B cells as well as relative expression of phosphorylated Janus-kinase, phosphorylated signal transducers and activators of transcription, nuclear factor erythroid 2-related factor 2, and receptor activator of nuclear factor Kappa-B ligand. In addition, a histopathological examination of different groups' knees joints, and spleen was done. RESULTS The results showed a significant improvement of arthritis induced in the cerastes-treated group in contrast to the positive control group in all assessed parameters. In addition, significant improvement of arthritis was observed in the histopathological examination of different groups' knees joints, and spleen. CONCLUSION These results revealed that cerastes snake venom has potent anti-inflammatory and immunomodulatory effects and can be used in the management of arthritis.
Collapse
Affiliation(s)
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Egypt.
| | - Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Egypt.
| |
Collapse
|
4
|
Zhang Y, Shen J, Ma X, He Y, Zhang Y, Cao D. Anti-Inflammatory Activity of Phenylethanoids from Acanthus ilicifolius var. xiamenensis. J Med Food 2023; 26:135-145. [PMID: 36637805 DOI: 10.1089/jmf.2022.k.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Acanthus ilicifolius var. xiamenensis is a traditional herbal medicine in China. In this study, the anti-inflammatory activities of active ingredients of A. ilicifolius var. xiamenensis were investigated in RAW 264.7 cells and Freund's complete adjuvant-induced arthritic rats. Results showed that n-butanol extract exerted antiarthritic potential by reducing paw edema, arthritis score, and altered hematological and biochemical parameters in experimental rats. Phytochemical studies on n-butanol extract resulted in the isolation of five alkaloids (1-5) and five phenylethanoids (6-10). The anti-inflammatory assay of compounds 1-10 on lipopolysaccharide (LPS)-treated RAW 264.7 cells indicated that phenylethanoids 9 and 10 exhibited notable inhibitory activities. The result indicated that compounds 9 and 10 attenuated inflammation by decreasing the production of nuclear factor kappa-B (NF-κB) p65, inhibitory subunit of NF kappa B alpha, Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and inducible nitric oxide synthase in LPS-mediated RAW 264.7 macrophages. Phenylethanoids 9 and 10 increased the expression of interleukin-10 and endothelial nitric oxide synthase. Therefore, compounds 9 and 10 showed anti-inflammatory activity by regulation of NF-κB and JAK/STAT signaling pathways.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinhuang Shen
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinhua Ma
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yubin He
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yonghong Zhang
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Department of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
5
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
6
|
Li Q, Yang Z, Zheng S, Wu Y, Cai W, Hu M, Zhu Q, Ye L. Applicability of 14 Formulas for Estimating Glomerular Filtration Rate in the Evaluation of Renal Function before and after Nephron-Sparing Surgery in Patients with Renal Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:3330442. [PMID: 35615732 PMCID: PMC9110198 DOI: 10.1155/2022/3330442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Abstract
To compare the applicability of 14 equations of estimating glomerular filtration rate (eGFR) before and after nephron-sparing surgery (NSS) for renal function assessment of patients with renal tumors. Preoperative and postoperative GFR is measured by emission computed tomography (ECT) with 99mTc-DTPA as an imaging agent as reference GFR (rGFR) to compare with all formulas. Spearman correlation analysis and Bland-Altman agreement analysis were used to evaluate the correlation between rGFR and eGFR1 to 14 before and after surgery. A total of 50 cases including 22 males and 28 females were included. The results of preoperative eGFR1-14 correlated with rGFR (P < 0.05). The calculation results of all estimation formulas have a significant correlation with preoperative GFR. Preoperative MDRD-I, CKD-EPI SCysC, and FAS Scr-SCysC have good consistency. The CG formula has the highest precision and FAS Scr-SCysC has the highest accuracy. A total of 30 patients followed up after surgery, and postoperative rGFR correlated with CG, CKD-EPI, FAS, and BIS formulas (P < 0.05). But postoperative rGFR has no significant correlation with MDRD and Schwartz (P > 0.05). Postoperative CKD-EPI Scr-SCysC has best consistency, and FAS Scr-SCysC has the highest accuracy and precision. Our data suggest that eGFR equations evaluated by both serum creatinine (Scr) and cystatin C (SCysC) is not necessarily better than those evaluated by one of them alone. Among all enrolled equations, FAS Scr-SCysC is the best one to evaluate postoperative GFR in patients with renal tumors.
Collapse
Affiliation(s)
- Qiuyan Li
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - ZeSong Yang
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Shiwen Zheng
- Medical College, Anhui University of Science and Technology, Huainan 232000, China
| | - Yangbiao Wu
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Wanghai Cai
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Minxiong Hu
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingguo Zhu
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Liefu Ye
- Shengli Clinical Medical College of Fujian Medical University and Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
7
|
Liu L, Yao W, Xie X, Gao J, Lu X. pH-sensitive dual drug loaded janus nanoparticles by oral delivery for multimodal analgesia. J Nanobiotechnology 2021; 19:235. [PMID: 34362394 PMCID: PMC8348996 DOI: 10.1186/s12951-021-00974-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Background Based on the concept of “multimodal analgesia”, a novel dual drug delivery system was designed to achieve synergistic analgesia between najanajaatra venom protein (αCT) and resveratrol (Res). In order to meet the joint loading of two drugs with different physicochemical properties without affecting each other, an oral Janus nanoparticle (JNP) with a unique cavity structure and synergistic drug delivery was constructed using an improved double emulsion solvent evaporation method, and combined with low-molecular-weight chitosan/sodium alginate and PLGA to achieve its pH-responsive. Results The synthesized αCT/Res-JNPs are homogeneous in shape, with a two-compartment structure, approximately 230 nm in size, and zeta potential of 23.6 mV. Drug release assayed in vitro show that JNP was stable in simulated gastric juice (pH = 1.2) but was released in phosphate buffer saline (pH = 7.4). After intragastric administration in rats, PK evaluation showed that αCT/Res-JNPs could significantly improve the oral bioavailability, and the simultaneous encapsulation of the two drugs had no significant interaction on PK parameters. An obvious synergistic analgesic effects of αCT/Res-JNPs was confirmed in a spinal cord injury and acute pain model. Confocal laser scanning microscopy and single-pass intestinal perfusion model provided strong evidence that αCT/Res-JNPs could pass through intestinal epithelial cells, and the endocytosis pathway was mainly involved in the mediation and pinocytosis of reticulin. The concentrations of αCT and Res from αCT/Res-JNP in lymphatic transport were only about 8.72% and 6.08% of their blood concentrations at 1 h, respectively, which indicated that lymphatic transport in the form of JNP has limited advantages in improving the oral bioavailability of Res and αCT. Cellular uptake efficiency at 4 h was about 10–15% in Caco-2 cell lines for αCT/Res-JNP, but was reduced to 7% in Caco-2/HT29-MTX co-culture models due to the hindrance by the mucus layers. Approximately 12–17% of αCT/Res-JNP were transported across Caco-2/HT29-MTX/Raji monolayers. The cumulative absorption of JNP in three cell models was higher than that of free drug. Conclusions This study investigated the contribution of Janus nanoparticles in oral absorption, and provide a new perspective for oral administration and analgesic treatment of dual drug delivery system containing peptide drugs. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00974-6.
Collapse
Affiliation(s)
- Lin Liu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, PR China.,Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Wendong Yao
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, 310018, Hangzhou, PR China
| | - Xiaowei Xie
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, PR China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China.
| | - Xiaoyang Lu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
8
|
Minutti-Zanella C, Gil-Leyva EJ, Vergara I. Immunomodulatory properties of molecules from animal venoms. Toxicon 2021; 191:54-68. [PMID: 33417946 DOI: 10.1016/j.toxicon.2020.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/02/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The immune system can amplify or decrease the strength of its response when it is stimulated by chemical or biological substances that act as immunostimulators, immunosuppressants, or immunoadjuvants. Immunomodulation is a progressive approach to treat a diversity of pathologies with promising results, including autoimmune disorders and cancer. Animal venoms are a mixture of chemical compounds that include proteins, peptides, amines, salts, polypeptides, enzymes, among others, which produce the toxic effect. Since the discovery of captopril in the early 1980s, other components from snakes, spiders, scorpions, and marine animal venoms have been demonstrated to be useful for treating several human diseases. The valuable progress in fields such as venomics, molecular biology, biotechnology, immunology, and others has been crucial to understanding the interaction of toxins with the immune system and its application on immune pathologies. More in-depth knowledge of venoms' components and multi-disciplinary studies could facilitate their transformation into effective novel immunotherapies. This review addresses advances and research of molecules from venoms that have immunomodulatory properties.
Collapse
Affiliation(s)
- C Minutti-Zanella
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - E J Gil-Leyva
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico
| | - I Vergara
- Departamento de Ciencias Químico-Biológicas, Universidad de Las Américas Puebla, ExHda. Sta. Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
9
|
Ryan RYM, Lutzky VP, Herzig V, Smallwood TB, Potriquet J, Wong Y, Masci P, Lavin MF, King GF, Lopez JA, Ikonomopoulou MP, Miles JJ. Venom of the Red-Bellied Black Snake Pseudechis porphyriacus Shows Immunosuppressive Potential. Toxins (Basel) 2020; 12:toxins12110674. [PMID: 33114591 PMCID: PMC7693913 DOI: 10.3390/toxins12110674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Venoms act with remarkable specificity upon a broad diversity of physiological targets. Venoms are composed of proteins, peptides, and small molecules, providing the foundation for the development of novel therapeutics. This study assessed the effect of venom from the red-bellied black snake (Pseudechis porphyriacus) on human primary leukocytes using bead-based flow cytometry, mixed lymphocyte reaction, and cell viability assays. We show that venom treatment had a significant immunosuppressive effect, inhibiting the secretion of interleukin (IL)-2 and tumor necrosis factor (TNF) from purified human T cells by 90% or greater following stimulation with mitogen (phorbol 12-myristate 13-acetate and ionomycin) or via cluster of differentiation (CD) receptors, CD3/CD28. In contrast, venom treatment did not inhibit TNF or IL-6 release from antigen-presenting cells stimulated with lipopolysaccharide. The reduced cytokine release from T cells was not associated with inhibition of T cell proliferation or reduction of cell viability, consistent with an anti-inflammatory mechanism unrelated to the cell cycle. Deconvolution of the venom using reverse-phase HPLC identified four fractions responsible for the observed immunosuppressive activity. These data suggest that compounds from P. porphyriacus venom may be potential drug leads for T cell-associated conditions such as graft versus host disease, rheumatoid arthritis, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Rachael Y. M. Ryan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Correspondence: (R.Y.M.R.); (J.J.M.)
| | - Viviana P. Lutzky
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
- GeneCology Research Centre, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Taylor B. Smallwood
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
| | - Paul Masci
- Translational Research Institute, Brisbane, QLD 4102, Australia;
| | - Martin F. Lavin
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia;
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; (V.H.); (G.F.K.)
| | - J. Alejandro Lopez
- School of Environment and Sciences, Griffith University, Nathan, QLD 4111, Australia;
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
| | - Maria P. Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (V.P.L.); (T.B.S.); (M.P.I.)
- Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, 28049 Madrid, Spain
| | - John J. Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia;
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4878, Australia
- Correspondence: (R.Y.M.R.); (J.J.M.)
| |
Collapse
|
10
|
Bickler PE. Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins (Basel) 2020; 12:E68. [PMID: 31979014 PMCID: PMC7076764 DOI: 10.3390/toxins12020068] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The active components of snake venoms encompass a complex and variable mixture of proteins that produce a diverse, but largely stereotypical, range of pharmacologic effects and toxicities. Venom protein diversity and host susceptibilities determine the relative contributions of five main pathologies: neuromuscular dysfunction, inflammation, coagulopathy, cell/organ injury, and disruption of homeostatic mechanisms of normal physiology. In this review, we describe how snakebite is not only a condition mediated directly by venom, but by the amplification of signals dysregulating inflammation, coagulation, neurotransmission, and cell survival. Although venom proteins are diverse, the majority of important pathologic events following envenoming follow from a small group of enzyme-like activities and the actions of small toxic peptides. This review focuses on two of the most important enzymatic activities: snake venom phospholipases (svPLA2) and snake venom metalloproteases (svMP). These two enzyme classes are adept at enabling venom to recruit homologous endogenous signaling systems with sufficient magnitude and duration to produce and amplify cell injury beyond what would be expected from the direct impact of a whole venom dose. This magnification produces many of the most acutely important consequences of envenoming as well as chronic sequelae. Snake venom PLA2s and MPs enzymes recruit prey analogs of similar activity. The transduction mechanisms that recruit endogenous responses include arachidonic acid, intracellular calcium, cytokines, bioactive peptides, and possibly dimerization of venom and prey protein homologs. Despite years of investigation, the precise mechanism of svPLA2-induced neuromuscular paralysis remains incomplete. Based on recent studies, paralysis results from a self-amplifying cycle of endogenous PLA2 activation, arachidonic acid, increases in intracellular Ca2+ and nicotinic receptor deactivation. When prolonged, synaptic suppression supports the degeneration of the synapse. Interaction between endothelium-damaging MPs, sPLA2s and hyaluronidases enhance venom spread, accentuating venom-induced neurotoxicity, inflammation, coagulopathy and tissue injury. Improving snakebite treatment requires new tools to understand direct and indirect effects of envenoming. Homologous PLA2 and MP activities in both venoms and prey/snakebite victim provide molecular targets for non-antibody, small molecule agents for dissecting mechanisms of venom toxicity. Importantly, these tools enable the separation of venom-specific and prey-specific pathological responses to venom.
Collapse
Affiliation(s)
- Philip E. Bickler
- Department of Anesthesia and Perioperative Care, University of California at San Francisco, San Francisco, CA 94143-0542, USA;
- California Academy of Sciences, San Francisco, CA 94118, USA
| |
Collapse
|
11
|
Qin Z, Wang S, Guo D, Zhu J, Chen H, Bai L, Luo X, Yin Y. Comparative analysis of intestinal bacteria among venom secretion and non-secrection snakes. Sci Rep 2019; 9:6335. [PMID: 31004115 PMCID: PMC6474859 DOI: 10.1038/s41598-019-42787-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
To further investigate the bacterial community and identify the bacterial biomarkers between venom secretion and non-venom secretion snakes, 50 intestinal samples (25 large intestine, 25 small intestine) were obtained from 29 snakes (13 gut samples from Deinagkistrodon, 26 from Naja and 11 from Ptyas mucosa). 16S rDNA high-throughput sequencing results showed that 29 bacterial phyla, 545 bacterial genera, and 1,725 OTUs (operational taxonomic units) were identified in these samples. OTU numbers and the Ace, Chao, Shannon, and Simpson indexes were very similar among the three breeds of snakes included in this study. The Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria were predominant bacterial phyla. The relative abundance at the phylum level among these samples was similar, and the difference between small and large intestinal samples was not obvious. However, at the genus level, venom secretion snakes Deinagkistrodon and Naja clustered together according to different breeds. 27, 24, and 16 genera were identified as core microbes for Deinagkistrodon, Naja, and Ptyas mucosa, respectively. Interestingly, the relative abundances of genera Hafnia_Obesumbacterium, Providencia, and Ureaplasma were found to be significantly higher in non-venom secretion snakes, and the genera Achromobacter, Cetobacterium, Clostridium innocuum group, Fusobacterium, Lachnoclostridium, Parabacteroides, and Romboutsia were only detected in venom secretion snakes. The function of these bacteria in venom secretion needs to be further studied, and these venom secretion related genera may be the promising target to improve venom production.
Collapse
Affiliation(s)
- Zuodong Qin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.,Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Siqi Wang
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Dezhi Guo
- Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Jialiang Zhu
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Huahai Chen
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Le Bai
- Yongzhou City Strange Snake Science and Technology Industrial Co., Ltd., Yongzhou, Hunan, 425000, China
| | - Xiaofang Luo
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Yeshi Yin
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China.
| |
Collapse
|
12
|
Animal protein toxins: origins and therapeutic applications. BIOPHYSICS REPORTS 2018; 4:233-242. [PMID: 30533488 PMCID: PMC6245134 DOI: 10.1007/s41048-018-0067-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/23/2018] [Indexed: 12/21/2022] Open
Abstract
Venomous animals on the earth have been found to be valuable resources for the development of therapeutics. Enzymatic and non-enzymatic proteins and peptides are the major components of animal venoms, many of which can target various ion channels, receptors, and membrane transporters. Compared to traditional small molecule drugs, natural proteins and peptides exhibit higher specificity and potency to their targets. In this review, we summarize the varieties and characteristics of toxins from a few representative venomous animals, and describe the components and applications of animal toxins as potential drug candidates in the treatment of human diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, neuropathic pain, as well as autoimmune diseases. In the meantime, there are many obstacles to translate new toxin discovery to their clinical applications. The challenges, strategies, and perspectives in the development of the protein toxin-based drugs are discussed as well.
Collapse
|