1
|
Li X, Wang MY, Wang Y, Yang WZ, Yang CX. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination. J Chromatogr A 2024; 1724:464915. [PMID: 38663319 DOI: 10.1016/j.chroma.2024.464915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 μg L-1), low limits of detection (1.4-35 μg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.
Collapse
Affiliation(s)
- Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meng-Yao Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Muñoz-Solano B, Lizarraga Pérez E, González-Peñas E. Monitoring Mycotoxin Exposure in Food-Producing Animals (Cattle, Pig, Poultry, and Sheep). Toxins (Basel) 2024; 16:218. [PMID: 38787070 PMCID: PMC11125880 DOI: 10.3390/toxins16050218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Food-producing animals are exposed to mycotoxins through ingestion, inhalation, or dermal contact with contaminated materials. This exposure can lead to serious consequences for animal health, affects the cost and quality of livestock production, and can even impact human health through foods of animal origin. Therefore, controlling mycotoxin exposure in animals is of utmost importance. A systematic literature search was conducted in this study to retrieve the results of monitoring exposure to mycotoxins in food-producing animals over the last five years (2019-2023), considering both external exposure (analysis of feed) and internal exposure (analysis of biomarkers in biological matrices). The most commonly used analytical technique for both approaches is LC-MS/MS due to its capability for multidetection. Several mycotoxins, especially those that are regulated (ochratoxin A, zearalenone, deoxynivalenol, aflatoxins, fumonisins, T-2, and HT-2), along with some emerging mycotoxins (sterigmatocystin, nivalenol, beauvericin, enniantins among others), were studied in 13,818 feed samples worldwide and were typically detected at low levels, although they occasionally exceeded regulatory levels. The occurrence of multiple exposure is widespread. Regarding animal biomonitoring, the primary objective of the studies retrieved was to study mycotoxin metabolism after toxin administration. Some compounds have been suggested as biomarkers of exposure in the plasma, urine, and feces of animal species such as pigs and poultry. However, further research is required, including many other mycotoxins and animal species, such as cattle and sheep.
Collapse
Affiliation(s)
| | | | - Elena González-Peñas
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain; (B.M.-S.); (E.L.P.)
| |
Collapse
|
3
|
Lou Y, Xu Q, Chen J, Yang S, Zhu Z, Chen D. Advancements in Sample Preparation Methods for the Chromatographic and Mass Spectrometric Determination of Zearalenone and Its Metabolites in Food: An Overview. Foods 2023; 12:3558. [PMID: 37835213 PMCID: PMC10572225 DOI: 10.3390/foods12193558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Zearalenone and its metabolites are mycotoxins generated by Fusarium species while crops are growing and can typically be found in various foods, posing a risk to human health. Governments have implemented stricter regulations concerning the permissible levels of zearalenone in food products to safeguard public health. Stricter regulations on zearalenone levels in food have been implemented. However, detecting zearalenone and its metabolites remains challenging due to sample complexity and interference. Surprisingly few reviews of sample preparation methods for zearalenone in food have appeared in the past decade. In this overview, we outline the most recent developments in the sample pre-treatment technology of zearalenone and its metabolites in food samples based on chromatography-mass spectrometry methods since 2012. This review covers some prominent technologies, such as liquid-liquid extraction-based methods, solid-phase extraction-based methods, and QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction, providing valuable insights into their advantages and limitations for potential applications. The assessment of the methods discussed, along with an overview of current challenges and prospects, will guide researchers in advancing the field and ensuring safer food quality for consumers worldwide.
Collapse
Affiliation(s)
- Yifeng Lou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Qingyang Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Jiaqi Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
| | - Zheng Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (Q.X.); (J.C.); (S.Y.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases of Henan Province, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Mendes MI, Cunha SC, Rebai I, Fernandes JO. Algerian Workers' Exposure to Mycotoxins-A Biomonitoring Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6566. [PMID: 37623152 PMCID: PMC10454754 DOI: 10.3390/ijerph20166566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
Mycotoxins, produced by fungi as secondary metabolites, have the potential to induce both short-term and long-term toxic consequences in animals and humans. The present study aimed to determine multi-mycotoxin levels in Algerian workers using urine as the target. A method based on a QuEChERS (quick, easy, cheap, effective, rugged, and safe) extraction procedure followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was optimized and validated for the determination of eleven mycotoxins in 96 urine samples. Different sorbents were tested to be used in the dispersive solid-phase extraction (d-SPE) cleanup step of QuEChERS. The final method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, and precision. All samples contained at least two mycotoxins, and toxin-2 (T-2) was the most common, being found in 92.7% of the samples, followed by zearalenone (ZEN) in 90.6% of positive samples, and ochratoxin A (OTA) in 86.4%. T-2 levels ranged from 0.3 μg/L to 36.3 μg/L, while OTA ranged from 0.3 μg/L to 3.5 μg/L, and ZEN ranged from 7.6 μg/L to 126.8 μg/L. This was the first mycotoxin biomonitoring study carried out in the Algerian population. The findings highlight the need for accurate data for better risk assessment and for the development of better regulation to manage mycotoxin contamination in this country.
Collapse
Affiliation(s)
- Marta I. Mendes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Iméne Rebai
- Laboratory of Toxicology, Faculty of Medicine, Salah Boubnider University 3, Constantine 5000, Algeria;
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| |
Collapse
|
5
|
Ma L, Zhang X, Xiao Y, Fang H, Zhang G, Yang H, Zhou Y. Fluorescence and colorimetric dual-mode immunoassay based on G-quadruplex/N-methylmesoporphyrin IX and p-nitrophenol for detection of zearalenone. Food Chem 2023; 401:134190. [DOI: 10.1016/j.foodchem.2022.134190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
6
|
Balló A, Busznyákné Székvári K, Czétány P, Márk L, Török A, Szántó Á, Máté G. Estrogenic and Non-Estrogenic Disruptor Effect of Zearalenone on Male Reproduction: A Review. Int J Mol Sci 2023; 24:ijms24021578. [PMID: 36675103 PMCID: PMC9862602 DOI: 10.3390/ijms24021578] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
According to some estimates, at least 70% of feedstuffs and finished feeds are contaminated with one or more mycotoxins and, due to its significant prevalence, both animals and humans are highly likely to be exposed to these toxins. In addition to health risks, they also cause economic issues. From a healthcare point of view, zearalenone (ZEA) and its derivatives have been shown to exert many negative effects. Specifically, ZEA has hepatotoxicity, immunotoxicity, genotoxicity, carcinogenicity, intestinal toxicity, reproductive toxicity and endocrine disruption effects. Of these effects, male reproductive deterioration and processes that lead to this have been reviewed in this study. Papers are reviewed that demonstrate estrogenic effects of ZEA due to its analogy to estradiol and how these effects may influence male reproductive cells such as spermatozoa, Sertoli cells and Leydig cells. Data that employ epigenetic effects of ZEA are also discussed. We discuss literature data demonstrating that reactive oxygen species formation in ZEA-exposed cells plays a crucial role in diminished spermatogenesis; reduced sperm motility, viability and mitochondrial membrane potential; altered intracellular antioxidant enzyme activities; and increased rates of apoptosis and DNA fragmentation; thereby resulting in reduced pregnancy.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | | | - Péter Czétány
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Árpád Szántó
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary
- Urology Clinic, Clinical Centre, Medical School, University of Pécs, 7621 Pécs, Hungary
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
7
|
Guan Y, Ma J, Neng J, Yang B, Wang Y, Xing F. A Novel and Label-Free Chemiluminescence Detection of Zearalenone Based on a Truncated Aptamer Conjugated with a G-Quadruplex DNAzyme. BIOSENSORS 2023; 13:118. [PMID: 36671953 PMCID: PMC9856370 DOI: 10.3390/bios13010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Zearalenone (ZEN), one of the most frequently occurring mycotoxin contaminants in foods and feeds, poses considerable threat to human and animal health, owing to its acute and chronic toxicities. Thus, rapid and accurate detection of ZEN has attracted broad research interest. In this work, a novel and label-free chemiluminescence aptasensor based on a ZEN aptamer and a G-quadruplex DNAzyme was constructed. It was established on a competitive assay between ZEN and an auxiliary DNA for the aptamer, leading to activation of the G-quadruplex/hemin DNAzyme and subsequent signal amplification by chemiluminescence generation after substrate addition. To maximize the detection sensitivity, numerous key parameters including truncated aptamers were optimized with molecular docking analysis. Upon optimization, our aptasensor exhibited a perfect linear relationship (R2 = 0.9996) for ZEN detection in a concentration range of 1-100 ng/mL (3.14-314.10 nM) within 40 min, achieving a detection limit of 2.85 ng/mL (8.95 nM), which was a 6.7-fold improvement over that before optimization. Most importantly, the aptasensor obtained a satisfactory recovery rate of 92.84-137.27% and 84.90-124.24% for ZEN-spiked wheat and maize samples, respectively. Overall, our label-free chemiluminescence aptasensor displayed simplicity, sensitivity, specificity and practicality in real samples, indicating high application prospects in the food supply chain for rapid detection of ZEN.
Collapse
Affiliation(s)
- Yue Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junning Ma
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jing Neng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolei Yang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Wang R, Cui N, Yiannikouris A, Huang Y, Zhao W, Su X, Lin G, Zhu R, Song Z, Wang P. New Insights into the Deposition of Zearalenone in Minipigs: A Suitable Bioindicator for Internal Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14032-14042. [PMID: 36269318 DOI: 10.1021/acs.jafc.2c05159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detrimental footprint of mycotoxins in agriculture and on animal production has been widely recognized, especially in swine. Despite an increased number of research evaluating the toxicokinetics of mycotoxins in animal organisms, the absorption, distribution, metabolization, and excretion (ADME) patterns of zearalenone (ZEN) need further understanding. Furthermore, in vivo bioindicator for ZEN exposure in individual pigs has yet to be characterized. This study explored the ADME of ZEN in Bama Aroma pigs, a Chinese miniature pig breed, that has been used herein as a swine model. The findings revealed that ZEN was mainly metabolized into α-zearalenol (α-ZOL), and both ZEN and α-ZOL were mostly found in conjugated forms in the plasma, urine, and bile. The concentration and composition patterns of ZEN and its metabolites were tissue-specific, implying that the small intestine, liver, kidney, and lung play different roles in ZEN metabolism. The plasma concentrations of ZEN + α-ZOL highly correlated (R2 = 0.993) with the ZEN dietary exposure and may be utilized as a bioindicator to investigate animal exposure and mitigation efficacy of mycotoxin detoxifiers. This research would provide both fundamental information and a useful animal model for ZEN toxicity and detoxification studies.
Collapse
Affiliation(s)
- Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Na Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Alexandros Yiannikouris
- Center for Animal Nutrigenomics and Applied Animal Nutrition, Alltech Inc., 3031 Catnip Hill Road, Nicholasville, Kentucky 40356, United States
| | - Yuan Huang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Wenyu Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China
| | - Ronghua Zhu
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China
| | - Zhichao Song
- Henan Provincial Institute of Veterinary Drug Control, Zhengzhou 450008, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| |
Collapse
|
9
|
Chang J, Zhou J, Gao M, Zhang H, Wang T. Research Advances in the Analysis of Estrogenic Endocrine Disrupting Compounds in Milk and Dairy Products. Foods 2022; 11:foods11193057. [PMID: 36230133 PMCID: PMC9563511 DOI: 10.3390/foods11193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
Milk and dairy products are sources of exposure to estrogenic endocrine disrupting compounds (e-EDCs). Estrogenic disruptors can accumulate in organisms through the food chain and may negatively affect ecosystems and organisms even at low concentrations. Therefore, the analysis of e-EDCs in dairy products is of practical significance. Continuous efforts have been made to establish effective methods to detect e-EDCs, using convenient sample pretreatments and simple steps. This review aims to summarize the recently reported pretreatment methods for estrogenic disruptors, such as solid-phase extraction (SPE) and liquid phase microextraction (LPME), determination methods including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), Raman spectroscopy, and biosensors, to provide a reliable theoretical basis and operational method for e-EDC analysis in the future.
Collapse
|
10
|
Underreported Human Exposure to Mycotoxins: The Case of South Africa. Foods 2022; 11:foods11172714. [PMID: 36076897 PMCID: PMC9455755 DOI: 10.3390/foods11172714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.
Collapse
|
11
|
Effects of Intestinal Microorganisms on Metabolism and Toxicity Mitigation of Zearalenone in Broilers. Animals (Basel) 2022; 12:ani12151962. [PMID: 35953951 PMCID: PMC9367588 DOI: 10.3390/ani12151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Zearalenone (ZEN) widely contaminates all the feed crops, and ZEN may cause harmful damage to animals and humans. Different animals have different sensitivity to ZEN. Among these animals, chickens show a strong resistance. Intestinal microorganisms are essential in digestion and degradation. Therefore, we hypothesise whether intestinal microorganisms in chickens play an important role in digesting and degrading ZEN. In this study, we found that intestinal microorganisms could degrade ZEN to a certain degree by both vivo and vitro experiments. We concluded that the intestinal microbiota of broilers had metabolic effects on ZEN and alleviated antioxidant and liver damage caused by ZEN to broilers. Moreover, we found some key bacteria that are important in degrading ZEN. Abstract Zearalenone (ZEN) is an estrogenic mycotoxin, and chickens are relatively insensitive to it. In this study, the effects of intestinal microorganisms on ZEN metabolism and toxicity mitigation in broilers were studied by two experiments. Firstly, in vitro, ZEN was incubated anaerobically with chyme from each part of the chicken intestine to study its intestinal microbial metabolism. Then, in vivo, we explored the effects of intestinal microbiota on ZEN by inhibiting intestinal microorganisms. Broilers were fed a control diet, 2.5 mg/kg ZEN diet, microbial inhibition diet or ‘microbial inhibition +2.5 mg/kg ZEN’ diet. In vitro, the results showed that the rates of ZEN degradation by microorganisms in the duodenum, ileum, caecum, and colon were 56%, 12%, 15%, and 17%, respectively, and the microorganisms could convert ZEN into Zearalenol (ZOL). After microbial inhibition in vivo, the content of ZEN and its metabolites in excreta of broilers increased significantly, and antioxidant damage and liver damage were aggravated. 16S rRNA sequencing results showed that antioxidant indices and the content of ZEN and its metabolites in excreta were significantly correlated with the relative abundance of Streptococcus, Lactococcus and Enterococcus, etc. In conclusion, the intestinal microorganisms of broilers play an important role in ZEN metabolism and ZEN-induced antioxidant and liver injury mitigation, among which the key bacteria include Streptococcus, Lactococcus and Enterococcus, etc.
Collapse
|
12
|
Mróz M, Gajęcka M, Brzuzan P, Lisieska-Żołnierczyk S, Leski D, Zielonka Ł, Gajęcki MT. Carry-Over of Zearalenone and Its Metabolites to Intestinal Tissues and the Expression of CYP1A1 and GSTπ1 in the Colon of Gilts before Puberty. Toxins (Basel) 2022; 14:354. [PMID: 35622600 PMCID: PMC9145504 DOI: 10.3390/toxins14050354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to evaluate whether low doses of zearalenone (ZEN) affect the carry-over of ZEN and its metabolites to intestinal tissues and the expression of CYP1A1 and GSTπ1 in the large intestine. Prepubertal gilts (with a BW of up to 14.5 kg) were exposed in group ZEN to daily ZEN5 doses of 5 μg/kg BW (n = 15); in group ZEN10, 10 μg/kg BW (n = 15); in group ZEN15, 15 μg/kg BW (n = 15); or were administered a placebo (group C, n = 15) throughout the experiment. After euthanasia, tissues were sampled on exposure days 7, 21, and 42 (D1, D2, and D3, respectively). The results confirmed that the administered ZEN doses (LOAEL, NOAEL, and MABEL) were appropriate to reliably assess the carry-over of ZEN. Based on the observations made during 42 days of exposure to pure ZEN, it can be hypothesized that all mycotoxins (ZEN, α-zearalenol, and β-zearalenol) contribute to a balance between intestinal cells and the expression of selected genes encoding enzymes that participate in biotransformation processes in the large intestine; modulate feminization processes in prepubertal gilts; and elicit flexible, adaptive responses of the macroorganism to mycotoxin exposure at the analyzed doses.
Collapse
Affiliation(s)
- Magdalena Mróz
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719 Olsztyn, Poland;
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Dawid Leski
- Research and Development Department, Wipasz S.A., Wadąg 9, 10-373 Wadąg, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (M.M.); (Ł.Z.); (M.T.G.)
| |
Collapse
|
13
|
Simultaneous Determination of 23 Mycotoxins in Broiler Tissues by Solid Phase Extraction UHPLC-Q/Orbitrap High Resolution Mass Spectrometry. SEPARATIONS 2021. [DOI: 10.3390/separations8120236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins are a type of toxins harmful for not only animal but also human health. Cooccurrence of multi-mycotoxins could occur for food infected by several molds, producing multi-mycotoxins. It is necessary to develop corresponding determination methods, among which current mass spectrometry (MS) dominates. Currently, the accurate identification and quantitation of mycotoxins in complex matrices by MS with low resolution is still a challenge since false-positive results are typically obtained. Here, a method for the simultaneous determination of 23 mycotoxins in broiler tissues using ultra-high performance liquid chromatography-quadrupole/orbitrap HRMS was established. After the extraction by acetonitrile-water-formic acid (80:18:2, v/v/v), the purification by multifunctional purification solid phase extraction cartridges and the chromatographic separation on a C18 column, representative mycotoxins were determined by HRMS in full scan/data-dependent MS/MS acquisition mode. The quantitation was based on the external standard method. An MS/MS database of 23 mycotoxins was established to achieve qualitative screening and simultaneous quantification. Mycotoxins had a good linear relationship within a certain concentration range with correlation coefficients (r2) larger than 0.991 as well as the limit of quantitation of 1.80–300 μg/kg. The average recoveries at three different levels of low, medium and high fortification were 61–111% with relative standard deviations less than 13.5%. The method was fast, accurate, and suitable for the precise qualification of multiple mycotoxins in broiler tissues. 15 μg/kg zearalenone (ZEN) was detected in one liver sample among 30 samples from markets including chicken breast meat, liver, and gizzards. The result illustrated that the pollution of ZEN should not be neglected considering its harmful effect on the target organ of liver.
Collapse
|
14
|
Tolosa J, Rodríguez-Carrasco Y, Ruiz MJ, Vila-Donat P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem Toxicol 2021; 158:112661. [PMID: 34762978 DOI: 10.1016/j.fct.2021.112661] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The world requests for raw materials used in animal feed has been steadily rising in the last years driven by higher demands for livestock production. Mycotoxins are frequent toxic metabolites present in these raw materials. The exposure of farm animals to mycotoxins could result in undesirable residues in animal-derived food products. Thus, the potential ingestion of edible animal products (milk, meat and fish) contaminated with mycotoxins constitutes a public health concern, since they enter the food chain and may cause adverse effects upon human health. The present review summarizes the state-of-the-art on the occurrence of mycotoxins in feed, their metabolism and carry-over into animal source foodstuffs, focusing particularly on the last decade. Maximum levels (MLs) for various mycotoxins have been established for a number of raw feed materials and animal food products. Such values are sometimes exceeded, however. Aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), trichothecenes (TCs) and zearalenone (ZEN) are the most prevalent mycotoxins in animal feed, with aflatoxin M1 (AFM1) predominating in milk and dairy products, and OTA in meat by-products. The co-occurrence of mycotoxins in feed raw materials tends to be the rule rather than the exception, and the carry-over of mycotoxins from feed to animal source foods is more than proven.
Collapse
Affiliation(s)
- J Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - Y Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain.
| |
Collapse
|
15
|
Gajęcka M, Majewski MS, Zielonka Ł, Grzegorzewski W, Onyszek E, Lisieska-Żołnierczyk S, Juśkiewicz J, Babuchowski A, Gajęcki MT. Concentration of Zearalenone, Alpha-Zearalenol and Beta-Zearalenol in the Myocardium and the Results of Isometric Analyses of the Coronary Artery in Prepubertal Gilts. Toxins (Basel) 2021; 13:toxins13060396. [PMID: 34199438 PMCID: PMC8228058 DOI: 10.3390/toxins13060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
The carry-over of zearalenone (ZEN) to the myocardium and its effects on coronary vascular reactivity in vivo have not been addressed in the literature to date. Therefore, the objective of this study was to verify the hypothesis that low ZEN doses (MABEL, NOAEL and LOAEL) administered per os to prepubertal gilts for 21 days affect the accumulation of ZEN, α-ZEL and β-ZEL in the myocardium and the reactivity of the porcine coronary arteries to vasoconstrictors: acetylcholine, potassium chloride and vasodilator sodium nitroprusside. The contractile response to acetylcholine in the presence of a cyclooxygenase (COX) inhibitor, indomethacin and / or an endothelial nitric oxide synthase (e-NOS) inhibitor, L-NAME was also studied. The results of this study indicate that the carry-over of ZEN and its metabolites to the myocardium is a highly individualized process that occurs even at very low mycotoxin concentrations. The concentrations of the accumulated ZEN metabolites are inversely proportional to each other due to biotransformation processes. The levels of vasoconstrictors, acetylcholine and potassium chloride, were examined in the left anterior descending branch of the porcine coronary artery after oral administration of ZEN. The LOAEL dose clearly decreased vasoconstriction in response to both potassium chloride and acetylcholine (P < 0.05 for all values) and increased vasodilation in the presence of sodium nitroprusside (P = 0.021). The NOAEL dose significantly increased vasoconstriction caused by acetylcholine (P < 0.04), whereas the MABEL dose did not cause significant changes in the vascular response. Unlike higher doses of ZEN, 5 μg/kg had no negative influence on the vascular system.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
- Correspondence:
| | - Michał S. Majewski
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| | - Waldemar Grzegorzewski
- Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland;
- Interdisciplinary Center for Preclinical and Clinical Research, Department of Biotechnology, Institute of Biol-ogy and Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Po-land
| | - Ewa Onyszek
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland;
| | - Jerzy Juśkiewicz
- Department of Biological Function of Foods, Institute of Animal Reproduction and Food Research, Division of Food Science, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Andrzej Babuchowski
- Dairy Industry Innovation Institute Ltd., Kormoranów 1, 11-700 Mrągowo, Poland; (E.O.); (A.B.)
| | - Maciej T. Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (Ł.Z.); (M.T.G.)
| |
Collapse
|
16
|
Gémes B, Takács E, Gádoros P, Barócsi A, Kocsányi L, Lenk S, Csákányi A, Kautny S, Domján L, Szarvas G, Adányi N, Nabok A, Mörtl M, Székács A. Development of an Immunofluorescence Assay Module for Determination of the Mycotoxin Zearalenone in Water. Toxins (Basel) 2021; 13:182. [PMID: 33801263 PMCID: PMC8000975 DOI: 10.3390/toxins13030182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/12/2023] Open
Abstract
Project Aquafluosense is designed to develop prototypes for a fluorescence-based instrumentation setup for in situ measurements of several characteristic parameters of water quality. In the scope of the project an enzyme-linked fluorescent immunoassay (ELFIA) method has been developed for the detection of several environmental xenobiotics, including mycotoxin zearalenone (ZON). ZON, produced by several plant pathogenic Fusarium species, has recently been identified as an emerging pollutant in surface water, presenting a hazard to aquatic ecosystems. Due to its physico-chemical properties, detection of ZON at low concentrations in surface water is a challenging task. The 96-well microplate-based fluorescence instrument is capable of detecting ZON in the concentration range of 0.09-400 ng/mL. The sensitivity and accuracy of the analytical method has been demonstrated by a comparative assessment with detection by high-performance liquid chromatography and by total internal reflection ellipsometry. The limit of detection of the method, 0.09 ng/mL, falls in the low range compared to the other reported immunoassays, but the main advantage of this ELFIA method is its efficacy in combined in situ applications for determination of various important water quality parameters detectable by induced fluorimerty-e.g., total organic carbon content, algal density or the level of other organic micropollutants detectable by immunofluorimetry. In addition, the immunofluorescence module can readily be expanded to other target analytes if proper antibodies are available for detection.
Collapse
Affiliation(s)
- Borbála Gémes
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Eszter Takács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - Patrik Gádoros
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - László Kocsányi
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (P.G.); (A.B.); (L.K.); (S.L.)
| | - Attila Csákányi
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Szabolcs Kautny
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - László Domján
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Gábor Szarvas
- Optimal Optik Ltd., Dayka Gábor u. 6/B, H-1118 Budapest, Hungary; (A.C.); (S.K.); (L.D.); (G.S.)
| | - Nóra Adányi
- Food Science Research Centre, Institute of Food Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary;
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK;
| | - Mária Mörtl
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman O. út 15, H-1022 Budapest, Hungary; (B.G.); (E.T.); (M.M.)
| |
Collapse
|
17
|
Zearalenone and Metabolites in Livers of Turkey Poults and Broiler Chickens Fed with Diets Containing Fusariotoxins. Toxins (Basel) 2020; 12:toxins12080525. [PMID: 32824220 PMCID: PMC7472091 DOI: 10.3390/toxins12080525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
Zearalenone (ZEN) and metabolites were measured in livers of turkeys and broilers fed a control diet free of mycotoxins, a diet that contained 0.5 mg/kg ZEN (ZEN diet), and a diet that contained 0.5, 5, and 20 mg/kg of ZEN, fumonisins, and deoxynivalenol, respectively (ZENDONFB diet). The feed was individually distributed to male Grade Maker turkeys from the 55th to the 70th day of age and to male Ross chickens from the 1st to the 35th day of age, without any signs of toxicity. Together, the free and conjugated forms of ZEN, α- and β-zearalenols (ZOLs), zearalanone (ZAN), and α- and β-zearalanols (ZALs) were measured by UHPLC-MS/MS with [13C18]-ZEN as an internal standard and immunoaffinity clean-up of samples. ZAN and ZALs were not detected. ZEN and ZOLs were mainly found in their conjugated forms. α-ZOL was the most abundant and was found at a mean concentration of 2.23 and 1.56 ng/g in turkeys and chickens, respectively. Consuming the ZENDONFB diet significantly increased the level of total metabolites in the livers of chickens. Furthermore, this increase was more pronounced for the free forms of α-ZOL than for the conjugated forms. An investigation of the presence of ZEN and metabolites in muscle with the methods validated for the liver failed to reveal any traces of these contaminants in this tissue. These results suggest that concomitant dietary exposure to deoxynivalenol (DON) and fumonisins (FB) may alter the metabolism and persistence of ZEN and its metabolites in the liver.
Collapse
|
18
|
Caglayan MO, Şahin S, Üstündağ Z. Detection Strategies of Zearalenone for Food Safety: A Review. Crit Rev Anal Chem 2020; 52:294-313. [PMID: 32715728 DOI: 10.1080/10408347.2020.1797468] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEN) is a toxic compound produced by the metabolism of fungi (genus Fusarium) that threaten the food and agricultural industry belonging to the in foods and feeds. ZEN has toxic effects on human and animal health due to its mutagenicity, teratogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. To ensure food safety, rapid, precise, and reliable analytical methods can be developed for the detection of toxins such as ZEN. Different selective molecular diagnostic elements are used in conjunction with different detection strategies to achieve this goal. In this review, the use of electrochemical, colorimetric, fluorometric, refractometric as well as other strategies were discussed for ZEN detection. The success of the sensors in analytical performance depends on the development of receptors with increased affinity to the target. This requirement has been met with different immunoassays, aptamer-assays, and molecular imprinting techniques. The immobilization techniques and analysis strategies developed with the combination of nanomaterials provided high precision, reliability, and convenience in ZEN detection, in which electrochemical strategies perform the best.
Collapse
Affiliation(s)
| | - Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
19
|
Comparative Proteomic Investigation of Plasma Reveals Novel Potential Biomarker Groups for Acute Aortic Dissection. DISEASE MARKERS 2020; 2020:4785068. [PMID: 32256857 PMCID: PMC7106916 DOI: 10.1155/2020/4785068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/27/2019] [Accepted: 12/06/2019] [Indexed: 12/03/2022]
Abstract
Acute aortic dissection (AAD) is a catastrophic cardiovascular disease with high disability and mortality due to multiple fatal complications. However, the molecular changes of the serum proteome after AAD are not very clear. Here, we performed isobaric tags for relative and absolute quantitation- (iTRAQ-) based comparative proteomic analysis to investigate the proteome profile changes after AAD by collecting plasma samples from 20 AAD patients and 20 controls. Out of the 345 identified proteins, 266 were considered as high-quality quantified proteins (95%confident peptides ≥ 2), of which 25 proteins were accumulated and 12 were reduced in AAD samples. Gene ontology enrichment analysis showed that the 25 AAD-accumulated proteins were enriched in high-density lipoprotein particles for the cellular component category and protein homodimerization acidity for the molecular function category. Protein-protein interaction network analysis showed that serum amyloid A proteins (SAAs), complement component proteins, and carboxypeptidase N catalytic chain proteins (CPNs) possessed the key nodes of the network. The expression levels of six selected AAD-accumulated proteins, B2-GP1, CPN1, F9, LBP, SAA1, and SAA2, were validated by ELISA. Moreover, ROC analysis showed that the AUCs of B2-GP1 and CPN1 were 0.808 and 0.702, respectively. Our data provide insights into molecular change profiles in proteome levels after AAD and indicate that B2-GP1 and CPN1 are potential biomarkers for AAD.
Collapse
|
20
|
Hort V, Nicolas M, Travel A, Jondreville C, Maleix C, Baéza E, Engel E, Guérin T. Carry-over assessment of fumonisins and zearalenone to poultry tissues after exposure of chickens to a contaminated diet – A study implementing stable-isotope dilution assay and UHPLC-MS/MS. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Caglayan MO, Üstündağ Z. Detection of zearalenone in an aptamer assay using attenuated internal reflection ellipsometry and it's cereal sample applications. Food Chem Toxicol 2019; 136:111081. [PMID: 31883987 DOI: 10.1016/j.fct.2019.111081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Mycotoxins are toxic compounds produced by the metabolism of certain fungi that threaten the food and agricultural industry. Over hundreds of mycotoxins, one of the most common toxins, zearalenone (ZEN), has toxic effects on human and animal health due to its mutagenicity, treatogenicity, carcinogenicity, nephrotoxicity, immunotoxicity, and genotoxicity. In this work, attenuated internal reflection spectroscopic ellipsometry (AIR-SE) combined with the signal amplification via surface plasmon resonance conditions that were proved to be a highly sensitive analytical tool in bio-sensing was developed for the sensitive and selective ZEN detection in cereal products such as corn, wheat, rice, and oat. Combined with the oligonucleotide aptamer for ZEN recognition, our proposed method showed good performance with yielding 0.08 ng/mL LOD and 0.01-1000 ng/mL detection range. A mini-review was also introduced in, to compare various methods for ZEN detection.
Collapse
Affiliation(s)
| | - Zafer Üstündağ
- Kutahya Dumlupinar University, Chemistry Department, Kutahya, Turkey
| |
Collapse
|
22
|
Electrocatalytic oxidation of zearalenone on cobalt phthalocyanine-modified screen-printed carbon electrode. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02532-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Perestrelo R, Silva P, Porto-Figueira P, Pereira JAM, Silva C, Medina S, Câmara JS. QuEChERS - Fundamentals, relevant improvements, applications and future trends. Anal Chim Acta 2019; 1070:1-28. [PMID: 31103162 DOI: 10.1016/j.aca.2019.02.036] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
The Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method is a simple and straightforward extraction technique involving an initial partitioning followed by an extract clean-up using dispersive solid-phase extraction (d-SPE). Originally, the QuEChERS approach was developed for recovering pesticide residues from fruits and vegetables, but rapidly gained popularity in the comprehensive isolation of analytes from different matrices. According to PubMed, since its development in 2003 up to November 2018, about 1360 papers have been published reporting QuEChERS as extraction method. Several papers have reported different improvements and modifications to the original QuEChERS protocol to ensure more efficient extractions of pH-dependent analytes and to minimize the degradation of labile analytes. This analytical approach shows several advantages over traditional extraction techniques, requiring low sample and solvent volumes, as well as less time for sample preparation. Furthermore, most of the published studies show that the QuEChERS protocol provides higher recovery rate and a better analytical performance than conventional extraction procedures. This review proposes an updated overview of the most recent developments and applications of QuEChERS beyond its original application to pesticides, mycotoxins, veterinary drugs and pharmaceuticals, forensic analysis, drugs of abuse and environmental contaminants. Their pros and cons will be discussed, considering the factors influencing the extraction efficiency. Whenever possible, the performance of the QuEChERS is compared to other extraction approaches. In addition to the evolution of this technique, changes and improvements to the original method are discussed.
Collapse
Affiliation(s)
- Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal.
| | - Pedro Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Priscilla Porto-Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Jorge A M Pereira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Catarina Silva
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Sonia Medina
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal; Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
24
|
Lorenz N, Dänicke S, Edler L, Gottschalk C, Lassek E, Marko D, Rychlik M, Mally A. A critical evaluation of health risk assessment of modified mycotoxins with a special focus on zearalenone. Mycotoxin Res 2019; 35:27-46. [PMID: 30209771 PMCID: PMC6331505 DOI: 10.1007/s12550-018-0328-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/16/2022]
Abstract
A comprehensive definition introducing the term "modified mycotoxins" to encompass all possible forms in which mycotoxins and their modifications can occur was recently proposed and has rapidly gained wide acceptance within the scientific community. It is becoming increasingly evident that exposure to such modified mycotoxins due to their presence in food and feed has the potential to pose a substantial additional risk to human and animal health. Zearalenone (ZEN) is a well-characterized Fusarium toxin. Considering the diversity of modified forms of ZEN occurring in food and feed, the toxicologically relevant endocrine activity of many of these metabolites, and the fact that modified forms add to a dietary exposure which approaches the tolerable daily intake by free ZEN alone, modified forms of ZEN present an ideal case study for critical evaluation of modified mycotoxins in food safety. Following a summary of recent scientific opinions of EFSA dealing with health risk assessment of ZEN alone or in combination with its modified forms, uncertainties and data gaps are highlighted. Issues essential for evaluation and prioritization of modified mycotoxins in health risk assessment are identified and discussed, including opportunities to improve exposure assessment using biomonitoring data. Further issues such as future consideration of combinatory effects of the parent toxin with its modified forms and also other compounds co-occurring in food and feed are addressed. With a particular focus on ZEN, the most pressing challenges associated with health risk assessment of modified mycotoxins are identified and recommendations for further research to fill data gaps and reduce uncertainties are made.
Collapse
Affiliation(s)
- Nicole Lorenz
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Sven Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116, Braunschweig, Germany
| | - Lutz Edler
- Division of Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christoph Gottschalk
- Chair of Food Safety, Veterinary Faculty, Ludwig-Maximilians-University Munich, Schönleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Eva Lassek
- Bavarian Health and Food Safety Authority, Luitpoldstr. 1, 97082, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Währingerstr. 38, 1090, Vienna, Austria
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University Munich, Alte Akademie 10, 85354, Freising, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| |
Collapse
|
25
|
Llorent-Martínez E, Fernández-Poyatos M, Ruiz-Medina A. Automated fluorimetric sensor for the determination of zearalenone mycotoxin in maize and cereals feedstuff. Talanta 2019; 191:89-93. [DOI: 10.1016/j.talanta.2018.08.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/04/2023]
|
26
|
Occurrence and Quantitative Risk Assessment of Twelve Mycotoxins in Eggs and Chicken Tissues in China. Toxins (Basel) 2018; 10:toxins10110477. [PMID: 30453492 PMCID: PMC6265989 DOI: 10.3390/toxins10110477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Aflatoxins (AFs), deoxynivalenols (DONs), and zearalenones (ZENs) are common mycotoxins that contaminate feedstuff, causing contamination of poultry products. In our study, these mycotoxins were quantified in 152 egg samples collected from markets in Jiangsu (JS), Zhejiang (ZJ), and Shanghai (SH) and in 70 chicken tissue samples (liver, heart, and gizzard) from ZJ in China. The main mycotoxins observed in egg samples were DON, 15-AcDON, and ZEN, although only ZEN family mycotoxins (ZEN, α-ZEL, β-ZEL, and α-ZAL) were detected in chicken tissues. Furthermore, for the first time, we assessed the health risks of exposure of three populations (children, adults, and elder adults) to DONs (DON, 3-AcDON, and 15-AcDON) and ZEN in eggs (from three different areas) and to ZEN in chicken tissues. We show that the mean dietary intake (DI) values and the 97.5th percentile DI values of DON and ZEN through egg ingestion were lower than the provisional maximum tolerable daily intake (PMTDI) (1 μg/kg body weight (BW)/day) for the three populations in the three geographical areas studied. However, eggs contaminated with high levels of DONs and ZEN contributed to a large proportion of the PMTDI of these mycotoxins, especially in children and elder adults. Although ZEN was highly detected in the chicken tissues, no significant health risk was observed.
Collapse
|