1
|
Artola-Borán M, Fallegger A, Priola M, Jeske R, Waterboer T, Dohlman AB, Shen X, Wild S, He J, Levesque MP, Yousefi S, Simon HU, Cheng PF, Müller A. Mycobacterial infection aggravates Helicobacter pylori-induced gastric preneoplastic pathology by redirection of de novo induced Treg cells. Cell Rep 2022; 38:110359. [PMID: 35139377 DOI: 10.1016/j.celrep.2022.110359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/12/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The two human pathogens Helicobacter pylori and Mycobacterium tuberculosis (Mtb) co-exist in many geographical areas of the world. Here, using a co-infection model of H. pylori and the Mtb relative M. bovis bacillus Calmette-Guérin (BCG), we show that both bacteria affect the colonization and immune control of the respective other pathogen. Co-occurring M. bovis boosts gastric Th1 responses and H. pylori control and aggravates gastric immunopathology. H. pylori in the stomach compromises immune control of M. bovis in the liver and spleen. Prior antibiotic H. pylori eradication or M. bovis-specific immunization reverses the effects of H. pylori. Mechanistically, the mutual effects can be attributed to the redirection of regulatory T cells (Treg cells) to sites of M. bovis infection. Reversal of Treg cell redirection by CXCR3 blockade restores M. bovis control. In conclusion, the simultaneous presence of both pathogens exacerbates the problems associated with each individual infection alone and should possibly be factored into treatment decisions.
Collapse
Affiliation(s)
- Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Angela Fallegger
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Martina Priola
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Rima Jeske
- Infection and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Tim Waterboer
- Infection and Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Anders B Dohlman
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Center for Genomics and Computational Biology, Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Jiazhuo He
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| | - Phil F Cheng
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Ansari H, Tahmasebi-Birgani M, Bijanzadeh M. DNA vaccine containing Flagellin A gene induces significant immune responses against Helicobacter pylori infection: An in vivo study. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:796-804. [PMID: 34630957 PMCID: PMC8487603 DOI: 10.22038/ijbms.2021.54415.12227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Objective(s): Helicobacter pylori is one of the most prevalent human infectious agents that is directly involved in various upper digestive tract diseases. Although antibiotics-based therapy and proton pump inhibitors eradicate the bacteria mostly, their effectiveness has been declined recently due to emergence of antibiotic-resistant strains. Development of a DNA vaccine is a promising approach against bacterial pathogens. Genes encoding motility factors are promising immunogens to develop a DNA vaccine against H. pylori infection due to critical role of these genes in bacterial attachment and colonization within the gastric lumen. The present study aimed to synthesize a DNA vaccine construct based on the Flagellin A gene (flaA), the predominant flagellin subunit in H. pylori flagella. Materials and Methods: The coding sequence of flaA was amplified through PCR and sub-cloned in the pBudCE4.1 vector. The recombinant vector was introduced into the human dermal fibroblast cells, and its potency to express the flaA protein was analyzed using SDS-PAGE. The recombinant construct was intramuscularly (IM) injected into the mice, and the profiles of cytokines and immunoglobulins were measured using ELISA. Results: It has been found that flaA was successfully expressed in cells. Recombinant-vector also increased the serum levels of evaluated cytokines and immunoglobulins in mice. Conclusion: These findings showed that the pBudCE4.1-flaA construct was able to activate the immune responses. This study is the first step towards synthesis of recombinant-construct based on the flaA gene. Immunization with such construct may inhibit the H. pylori-associated infection; however, further experiments are urgent.
Collapse
Affiliation(s)
- Hossein Ansari
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Biotechnology, Islamic Azad University of Ahvaz, Ahvaz Branch, Ahvaz, Iran
| | - Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Bijanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Khani S, Talebi Bezmin Abadi A, Mohabati Mobarez A. Clarithromycin-Susceptible But Virulent Helicobacter pylori Strains Infecting Iranian Patients' Stomachs. Infect Drug Resist 2019; 12:3415-3420. [PMID: 31802920 PMCID: PMC6830365 DOI: 10.2147/idr.s223602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Helicobacter pylori was discovered first in the stomachs of patients with gastritis and ulcers by Marshall and Warren in 1982. This discovery majorly affected many research areas of gastroenterology. Since then, the main aim has been to eradicate this microaerophilic bacterium from the stomachs of infected subjects. Methods We studied symptomatic cases by endoscopic surgery and examined the prevalence of cagA-vacA genotypes among the H. pylori isolates. H. pylori isolated from antral biopsies of patients with gastritis and duodenal ulcer were subjected to antimicrobial susceptibility testing and PCR genotyping by using routine bacterial cultures. Clarithromycin-susceptibility profiling was done by the E-test. DNA was extracted using standard manufacturer protocols with minor modifications and cagA and vacA genotyping was done PCR. Results In our study, all strains identified as H. pylori in culture (61/81) were confirmed by PCR by amplifying a fragment of the glmM gene. Totally, 61 patients were confirmed to be positive for H. pylori and they were included in the genotyping and antibiotic-susceptibility testing. Thirteen H. pylori strains were determined to be resistant to clarithromycin. Discussion Current accumulating data indicate that both clarithromycin-resistant and susceptible isolates of H. pylori need to be screened and tracked in populations.
Collapse
Affiliation(s)
- Shadiyeh Khani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects the gastric epithelia of its human host. Everyone who is colonized with these pathogenic bacteria can develop gastric inflammation, termed gastritis. Additionally, a small proportion of colonized people develop more adverse outcomes, including gastric ulcer disease, gastric adenocarcinoma, or gastric mucosa-associated lymphoid tissue lymphoma. The development of these adverse outcomes is dependent on the establishment of a chronic inflammatory response. The development and control of this chronic inflammatory response are significantly impacted by CD4+ T helper cell activity. Noteworthy, T helper 17 (Th17) cells, a proinflammatory subset of CD4+ T cells, produce several proinflammatory cytokines that activate innate immune cell antimicrobial activity, drive a pathogenic immune response, regulate B cell responses, and participate in wound healing. Therefore, this review was written to take an intricate look at the involvement of Th17 cells and their affiliated cytokines (interleukin-17A [IL-17A], IL-17F, IL-21, IL-22, and IL-26) in regulating the immune response to H. pylori colonization and carcinogenesis.
Collapse
|