1
|
Hajdú G, Szathmári C, Sőti C. Modeling Host-Pathogen Interactions in C. elegans: Lessons Learned from Pseudomonas aeruginosa Infection. Int J Mol Sci 2024; 25:7034. [PMID: 39000143 PMCID: PMC11241598 DOI: 10.3390/ijms25137034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/17/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Infections, such as that by the multiresistant opportunistic bacterial pathogen Pseudomonas aeruginosa, may pose a serious health risk, especially on vulnerable patient populations. The nematode Caenorhabditis elegans provides a simple organismal model to investigate both pathogenic mechanisms and the emerging role of innate immunity in host protection. Here, we review the virulence and infection strategies of P. aeruginosa and host defenses of C. elegans. We summarize the recognition mechanisms of patterns of pathogenesis, including novel pathogen-associated molecular patterns and surveillance immunity of translation, mitochondria, and lysosome-related organelles. We also review the regulation of antimicrobial and behavioral defenses by the worm's neuroendocrine system. We focus on how discoveries in this rich field align with well-characterized evolutionary conserved protective pathways, as well as on potential crossovers to human pathogenesis and innate immune responses.
Collapse
Affiliation(s)
- Gábor Hajdú
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csenge Szathmári
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Csaba Sőti
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
2
|
Olszak T, Augustyniak D, García-Romero I, Markwitz P, Gula G, Molinaro A, Valvano MA, Drulis-Kawa Z. Phage treatment of Pseudomonas aeruginosa yields a phage-resistant population with different susceptibility to innate immune responses and mild effects on metabolic profiles. Microbiol Res 2024; 282:127609. [PMID: 38428337 DOI: 10.1016/j.micres.2024.127609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
In this study, we have investigated innate immune activation capacity and metabolic features of a population of P. aeruginosa PAO1 phage-resistant mutants with diverse genetic modification (large genomic deletions and point mutations) arising after exposure to phages targetting lipopolysaccharide (LPS) or Type-4 pili (T4P). Deletions led to the loss of genes involved in LPS synthesis, cell envelope permeability, efflux systems, biofilm production, oxidative stress tolerance, and DNA repair. Loss of LPS O antigen resulted in bacterial sensitivity to serum complement and stimulation of inflammatory cascades but did not cause increased phagocytosis, while T4P phage-resistant mutants were more effectively phagocytized than LPS-defective mutants. Changes in the utilization of different carbon, nitrogen, sulphur, and phosphorus sources were identified, especially in mutants where the two phage DNA persisted in the bacterial population (pseudolysogeny). However, the metabolic changes did not directly correlate with single-gene mutations or the large gene deletions, suggesting they reflect adaptive changes to the gene modifications that arise during the selection of resistant mutants. In contrast, phage-resistant mutants were susceptible to humoral innate immune responses, suggesting that phage resistance may be a beneficial outcome of phage therapy.
Collapse
Affiliation(s)
- Tomasz Olszak
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Inmaculada García-Romero
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Pawel Markwitz
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Grzegorz Gula
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, Naples, Italy
| | - Miguel A Valvano
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, Poland.
| |
Collapse
|
3
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
4
|
Wood SJ, Goldufsky JW, Seu MY, Dorafshar AH, Shafikhani SH. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023; 12:cells12010195. [PMID: 36611990 PMCID: PMC9818787 DOI: 10.3390/cells12010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent opportunistic Gram-negative bacterial pathogens in humans. It causes many acute and chronic infections with morbidity and mortality rates as high as 40%. P. aeruginosa owes its pathogenic versatility to a large arsenal of cell-associated and secreted virulence factors which enable this pathogen to colonize various niches within hosts and protect it from host innate immune defenses. Induction of cytotoxicity in target host cells is a major virulence strategy for P. aeruginosa during the course of infection. P. aeruginosa has invested heavily in this strategy, as manifested by a plethora of cytotoxins that can induce various forms of cell death in target host cells. In this review, we provide an in-depth review of P. aeruginosa cytotoxins based on their mechanisms of cytotoxicity and the possible consequences of their cytotoxicity on host immune responses.
Collapse
Affiliation(s)
- Stephen J. Wood
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Josef W. Goldufsky
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
| | - Michelle Y. Seu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
5
|
Jouault A, Saliba AM, Touqui L. Modulation of the immune response by the Pseudomonas aeruginosa type-III secretion system. Front Cell Infect Microbiol 2022; 12:1064010. [PMID: 36519135 PMCID: PMC9742435 DOI: 10.3389/fcimb.2022.1064010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical cellular damage and subvert the immune response to promote its survival. Among the numerous virulence factors of P. aeruginosa, the type III secretion system (T3SS) is involved in host cell pathogenicity. Using a needle-like structure, T3SS detects eukaryotic cells and injects toxins directly into their cytosol, thus highlighting its ability to interfere with the host immune response. In this mini-review, we discuss how the T3SS and bacterial effectors secreted by this pathway not only activate the immune response but can also manipulate it to promote the establishment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Albane Jouault
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France,*Correspondence: Albane Jouault,
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Lhousseine Touqui
- Mucoviscidose: Phénotypique et Phénogénomique, Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, Paris, France,Département Santé Globale, Mucoviscidose et Bronchopathie Chroniques, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
7
|
Seifert R, Schirmer B. cCMP and cUMP come into the spotlight, finally. Trends Biochem Sci 2022; 47:461-463. [PMID: 35031198 DOI: 10.1016/j.tibs.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022]
Abstract
cCMP and cUMP have been identified in numerous biological systems and proposed to serve as second messengers. However, this proposal remained controversial because of the base-promiscuity of generators, effectors, phosphodiesterases, and bacterial toxins. With the identification of specific cytidylyl and uridylyl cyclases, cCMP and cUMP research enters a new era.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
8
|
Mandal P, Lyons JD, Burd EM, Koval M, Mocarski ES, Coopersmith CM. Integrated evaluation of lung disease in single animals. PLoS One 2021; 16:e0246270. [PMID: 34237078 PMCID: PMC8266100 DOI: 10.1371/journal.pone.0246270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
During infectious disease, pathogen load drives inflammation and immune response that together contribute to tissue injury often resulting in organ dysfunction. Pulmonary failure in SARS-CoV2-infected hospitalized COVID-19 patients is one such prominent example. Intervention strategies require characterization of the host-pathogen interaction by accurately assessing all of the above-mentioned disease parameters. To study infection in intact mammals, mice are often used as essential genetic models. Due to humane concerns, there is a constant unmet demand to develop studies that reduce the number of mice utilized while generating objective data. Here, we describe an integrated method of evaluating lung inflammation in mice infected with Pseudomonas aeruginosa or murine gammaherpesvirus (MHV)-68. This method conserves animal resources while permitting evaluation of disease mechanisms in both infection settings. Lungs from a single euthanized mouse were used for two purposes-biological assays to determine inflammation and infection load, as well as histology to evaluate tissue architecture. For this concurrent assessment of multiple parameters from a single euthanized mouse, we limit in-situ formalin fixation to the right lung of the cadaver. The unfixed left lung is collected immediately and divided into several segments for biological assays including determination of pathogen titer, assessment of infection-driven cytokine levels and appearance of cell death markers. In situ fixed right lung was then processed for histological determination of tissue injury and confirmation of infection-driven cell death patterns. This method reduces overall animal use and minimizes inter-animal variability that results from sacrificing different animals for different types of assays. The technique can be applied to any lung disease study in mice or other mammals.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - John D. Lyons
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Eileen M. Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Craig M. Coopersmith
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
9
|
Pittet JF, Hu PJ, Honavar J, Brandon AP, Evans CA, Muthalaly R, Ding Q, Wagener BM. Estrogen Alleviates Sex-Dependent Differences in Lung Bacterial Clearance and Mortality Secondary to Bacterial Pneumonia after Traumatic Brain Injury. J Neurotrauma 2020; 38:989-999. [PMID: 33203297 DOI: 10.1089/neu.2020.7327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of injury-related death and disability in patients under the age of 46 years. Survivors of the initial injury often endure systemic complications such as pulmonary infection, and Pseudomonas aeruginosa is one of the most common causes of nosocomial pneumonia in intensive care units. Female patients are less likely to develop secondary pneumonia after TBI, and pre-clinical studies have revealed a salutary role for estrogen after trauma. Therefore, we hypothesized that female mice would experience less mortality after post-TBI pneumonia with P. aeruginosa. We employed a mouse model of TBI followed by P. aeruginosa pneumonia. Male mice had greater mortality and impaired lung bacterial clearance after post-TBI pneumonia compared with female mice. This was confirmed as a difference in sex hormones, as oophorectomized wild-type mice had mortality and lung bacterial clearance similar to male mice. There were differences in tumor necrosis factor-α secretion in male and female alveolar macrophages after P. aeruginosa infection. Finally, injection of male or oophorectomized wild-type female mice with estrogen restored lung bacterial clearance and prevented mortality. Our model of TBI followed by P. aeruginosa pneumonia is among the first to reveal sex dimorphism in secondary, long-term TBI complications.
Collapse
Affiliation(s)
- Jean-Francois Pittet
- Divisions of Critical Care Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA.,Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Parker J Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jaideep Honavar
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela P Brandon
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cilina A Evans
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rebekah Muthalaly
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brant M Wagener
- Divisions of Critical Care Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA.,Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Wagener BM, Anjum N, Evans C, Brandon A, Honavar J, Creighton J, Traber MG, Stuart RL, Stevens T, Pittet JF. α-Tocopherol Attenuates the Severity of Pseudomonas aeruginosa-induced Pneumonia. Am J Respir Cell Mol Biol 2020; 63:234-243. [PMID: 32243761 DOI: 10.1165/rcmb.2019-0185oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.
Collapse
Affiliation(s)
- Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine.,Center for Free Radical Biology, and
| | - Naseem Anjum
- Department of Anesthesiology and Perioperative Medicine
| | - Cilina Evans
- Department of Anesthesiology and Perioperative Medicine
| | | | | | | | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | | | - Troy Stevens
- Department of Pharmacology and Medicine and the Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine.,Center for Lung Injury and Repair, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
Xu W, Li L, Wen X, Liu Q, Liu Y, Wang X, Lei L, Chen Q, Liu L. Construction of Genomic Library and High-Throughput Screening of Pseudomonas aeruginosa Novel Antigens for Potential Vaccines. Biol Pharm Bull 2020; 43:1469-1475. [PMID: 32779581 DOI: 10.1248/bpb.b19-01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hospital-acquired infections with Pseudomonas aeruginosa have become a great challenge in caring for critically ill and immunocompromised patients. The cause of high mortality is the presence of multi-drug resistant (MDR) strains, which confers a pressing need for vaccines. Although vaccines against P. aeruginosa have been in development for more than several decades, there is no vaccine for patients at present. In this study, we purified genomic DNA of P. aeruginosa from sera of patients affected, constructed genome-wide library with random recombinants, and screened candidate protein antigens by evaluating their protective effects in vivo. After 13-round of screening, 115 reactive recombinants were obtained, among which 13 antigens showed strong immunoreactivity (more than 10% reaction to PcrV, a well-characterized V-antigen of P. aeruginosa). These 13 antigens were: PpiA, PtsP, OprP, CAZ10_34235, HmuU_2, PcaK, CarAd, RecG, YjiR_5, LigD, KinB, RtcA, and PscF. In vivo studies showed that vaccination with PscF protected against lethal P. aeruginosa challenge, and decreased lung inflammation and injury. A genomic library of P. aeruginosa could be constructed in this way for the first time, which could not only screen candidate antigens but also in a high-throughput way. PscF was considered as an ideal promising vaccine candidate for combating P. aeruginosa infection and was supported for further evaluation of its safety and efficacy.
Collapse
Affiliation(s)
- Wanting Xu
- The Second Affiliated Hospital of Chengdu
| | - Lei Li
- The Second Affiliated Hospital of Chengdu
| | | | - Qun Liu
- The Second Affiliated Hospital of Chengdu
| | - Yan Liu
- The Second Affiliated Hospital of Chengdu
| | - Xingyong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Langhuan Lei
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Qiushan Chen
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Li Liu
- The Second Affiliated Hospital of Chengdu
| |
Collapse
|
12
|
Renema P, Kozhukhar N, Pastukh V, Spadafora D, Paudel SS, Tambe DT, Alexeyev M, Frank DW, Stevens T. Exoenzyme Y induces extracellular active caspase-7 accumulation independent from apoptosis: modulation of transmissible cytotoxicity. Am J Physiol Lung Cell Mol Physiol 2020; 319:L380-L390. [PMID: 32579398 DOI: 10.1152/ajplung.00508.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Caspase-3 and -7 are executioner caspases whose enzymatic activity is necessary to complete apoptotic cell death. Here, we questioned whether endothelial cell infection leads to caspase-3/7-mediated cell death. Pulmonary microvascular endothelial cells (PMVECs) were infected with Pseudomonas aeruginosa (PA103). PA103 caused cell swelling with a granular appearance, paralleled by intracellular caspase-3/7 activation and cell death. In contrast, PMVEC infection with ExoY+ (PA103 ΔexoUexoT::Tc pUCPexoY) caused cell rounding, but it did not activate intracellular caspase-3/7 and it did not cause cell death. However, ExoY+ led to a time-dependent accumulation of active caspase-7, but not caspase-3, in the supernatant, independent of apoptosis. To study the function of extracellular caspase-7, caspase-7- and caspase-3-deficient PMVECs were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. Caspase-7 activity was significantly reduced in supernatants from infected caspase-7-deficient cells but was unchanged in supernatants from infected caspase-3 deficient cells, indicating an uncoupling in the mechanism of activation of these two enzymes. Because ExoY+ leads to the release of heat stable amyloid cytotoxins that are responsible for transmissible cytotoxicity, we next questioned whether caspase-7 contributes to the severity of this process. Supernatants obtained from infected caspase-7-deficient cells displayed significantly reduced transmissible cytotoxicity when compared with supernatants from infected wild-type controls, illustrating an essential role for caspase-7 in promoting the potency of transmissible cytotoxicity. Thus, we report a mechanism whereby ExoY+ infection induces active caspase-7 accumulation in the extracellular space, independent of both caspase-3 and cell death, where it modulates ExoY+-induced transmissible cytotoxicity.
Collapse
Affiliation(s)
- Phoibe Renema
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Viktoriya Pastukh
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | | | - Sunita Subedi Paudel
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Dhananjay T Tambe
- Department of Pharmacology, University of South Alabama, Mobile, Alabama.,Department of Mechanical Engineering, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama.,Department of Internal Medicine, University of South Alabama, Mobile, Alabama.,Center for Lung Biology, University of South Alabama, Mobile, Alabama
| |
Collapse
|
13
|
Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins (Basel) 2020; 12:toxins12060369. [PMID: 32512716 PMCID: PMC7354586 DOI: 10.3390/toxins12060369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia in immunocompromised and intensive care unit (ICU) patients. During host infection, P. aeruginosa upregulates the type III secretion system (T3SS), which is used to intoxicate host cells with exoenzyme (Exo) virulence factors. Of the four known Exo virulence factors (U, S, T and Y), ExoU has been shown in prior studies to associate with high mortality rates. Preclinical studies have shown that ExoY is an important edema factor in lung infection caused by P. aeruginosa, although its importance in clinical isolates of P. aeruginosa is unknown. We hypothesized that expression of ExoY would be highly prevalent in clinical isolates and would significantly contribute to patient morbidity secondary to P. aeruginosa pneumonia. A single-center, prospective observational study was conducted at the University of Alabama at Birmingham Hospital. Mechanically ventilated ICU patients with a bronchoalveolar lavage fluid culture positive for P. aeruginosa were included. Enrolled patients were followed from ICU admission to discharge and clinical P. aeruginosa isolates were genotyped for the presence of exoenzyme genes. Ninety-nine patients were enrolled in the study. ExoY was present in 93% of P. aeruginosa clinical isolates. Moreover, ExoY alone (ExoY+/ExoU−) was present in 75% of P. aeruginosa isolates, compared to 2% ExoU alone (ExoY−/ExoU+). We found that bacteria isolated from human samples expressed active ExoY and ExoU, and the presence of ExoY in clinical isolates was associated with end-organ dysfunction. This is the first study we are aware of that demonstrates that ExoY is important in clinical outcomes secondary to nosocomial pneumonia.
Collapse
|
14
|
Voth S, Gwin M, Francis CM, Balczon R, Frank DW, Pittet JF, Wagener BM, Moser SA, Alexeyev M, Housley N, Audia JP, Piechocki S, Madera K, Simmons A, Crawford M, Stevens T. Virulent Pseudomonas aeruginosa infection converts antimicrobial amyloids into cytotoxic prions. FASEB J 2020; 34:9156-9179. [PMID: 32413239 PMCID: PMC7383673 DOI: 10.1096/fj.202000051rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
Pseudomonas aeruginosa infection elicits the production of cytotoxic amyloids from lung endothelium, yet molecular mechanisms of host‐pathogen interaction that underlie the amyloid production are not well understood. We examined the importance of type III secretion system (T3SS) effectors in the production of cytotoxic amyloids. P aeruginosa possessing a functional T3SS and effectors induced the production and release of cytotoxic amyloids from lung endothelium, including beta amyloid, and tau. T3SS effector intoxication was sufficient to generate cytotoxic amyloid release, yet intoxication with exoenzyme Y (ExoY) alone or together with exoenzymes S and T (ExoS/T/Y) generated the most virulent amyloids. Infection with lab and clinical strains engendered cytotoxic amyloids that were capable of being propagated in endothelial cell culture and passed to naïve cells, indicative of a prion strain. Conversely, T3SS‐incompetent P aeruginosa infection produced non‐cytotoxic amyloids with antimicrobial properties. These findings provide evidence that (1) endothelial intoxication with ExoY is sufficient to elicit self‐propagating amyloid cytotoxins during infection, (2) pulmonary endothelium contributes to innate immunity by generating antimicrobial amyloids in response to bacterial infection, and (3) ExoY contributes to the virulence arsenal of P aeruginosa through the subversion of endothelial amyloid host‐defense to promote a lung endothelial‐derived cytotoxic proteinopathy.
Collapse
Affiliation(s)
- Sarah Voth
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Meredith Gwin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Christopher Michael Francis
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ron Balczon
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Stephen A Moser
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Nicole Housley
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Jonathon P Audia
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Scott Piechocki
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Kayla Madera
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Autumn Simmons
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Michaela Crawford
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, USA.,Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
15
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
16
|
Che P, Wagener BM, Zhao X, Brandon AP, Evans CA, Cai GQ, Zhao R, Xu ZX, Han X, Pittet JF, Ding Q. Neuronal Wiskott-Aldrich syndrome protein regulates Pseudomonas aeruginosa-induced lung vascular permeability through the modulation of actin cytoskeletal dynamics. FASEB J 2020; 34:3305-3317. [PMID: 31916311 DOI: 10.1096/fj.201902915r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary edema associated with increased vascular permeability is a severe complication of Pseudomonas (P.) aeruginosa-induced acute lung injury. The mechanisms underlying P aeruginosa-induced vascular permeability are not well understood. In the present study, we investigated the role of neuronal Wiskott Aldrich syndrome protein (N-WASP) in modulating P aeruginosa-induced vascular permeability. Using lung microvascular endothelial and alveolar epithelial cells, we demonstrated that N-WASP downregulation attenuated P aeruginosa-induced actin stress fiber formation and prevented paracellular permeability. P aeruginosa-induced dissociation between VE-cadherin and β-catenin, but increased association between N-WASP and VE-cadherin, suggesting a role for N-WASP in promoting P aeruginosa-induced adherens junction rupture. P aeruginosa increased N-WASP-Y256 phosphorylation, which required the activation of Rho GTPase and focal adhesion kinase. Increased N-WASP-Y256 phosphorylation promotes N-WASP and integrin αVβ6 association as well as TGF-β-mediated permeability across alveolar epithelial cells. Inhibition of N-WASP-Y256 phosphorylation by N-WASP-Y256F overexpression blocked N-WASP effects in P aeruginosa-induced actin stress fiber formation and increased paracellular permeability. In vivo, N-WASP knockdown attenuated the development of pulmonary edema and improved survival in a mouse model of P aeruginosa pneumonia. Together, our data demonstrate that N-WASP plays an essential role in P aeruginosa-induced vascular permeability and pulmonary edema through the modulation of actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Divisions of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xueke Zhao
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Angela P Brandon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cilina A Evans
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guo-Qiang Cai
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhi-Xiang Xu
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Divisions of Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qiang Ding
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
17
|
Thanabalasuriar A, Scott BNV, Peiseler M, Willson ME, Zeng Z, Warrener P, Keller AE, Surewaard BGJ, Dozier EA, Korhonen JT, Cheng LIT, Gadjeva M, Stover CK, DiGiandomenico A, Kubes P. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019; 25:526-536.e4. [PMID: 30930127 DOI: 10.1016/j.chom.2019.02.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/30/2018] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Bacterial biofilm infections are difficult to eradicate because of antibiotic insusceptibility and high recurrence rates. Biofilm formation by Pseudomonas aeruginosa, a leading cause of bacterial keratitis, is facilitated by the bacterial Psl exopolysaccharide and associated with heightened virulence. Using intravital microscopy, we observed that neutrophilic recruitment to corneal infections limits P. aeruginosa biofilms to the outer eye surface, preventing bacterial dissemination. Neutrophils moved to the base of forming biofilms, where they underwent neutrophil extracellular trap formation (NETosis) in response to high expression of the bacterial type-3 secretion system (T3SS). NETs formed a barrier "dead zone," confining bacteria to the external corneal environment and inhibiting bacterial dissemination into the brain. Once formed, ocular biofilms were resistant to antibiotics and neutrophil killing, advancing eye pathology. However, blocking both Psl and T3SS together with antibiotic treatment broke down the biofilm and reversed keratitis, suggesting future therapeutic strategies for this intractable infection.
Collapse
Affiliation(s)
- Ajitha Thanabalasuriar
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada; Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Brittney Noelle Vivian Scott
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Moritz Peiseler
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Michelle Elizabeth Willson
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Zhutian Zeng
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Warrener
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Bas Gerardus Johannes Surewaard
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | | | - Juha Tapio Korhonen
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada
| | - Lily I-Ting Cheng
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Kendall Stover
- Microbial Sciences, MedImmune/AstraZeneca LLC, Gaithersburg, MD, USA
| | | | - Paul Kubes
- University of Calgary, Department of Physiology and Pharmacology, Calvin Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, Calgary, AB, Canada.
| |
Collapse
|
18
|
Belyy A, Santecchia I, Renault L, Bourigault B, Ladant D, Mechold U. The extreme C terminus of the Pseudomonas aeruginosa effector ExoY is crucial for binding to its eukaryotic activator, F-actin. J Biol Chem 2018; 293:19785-19796. [PMID: 30377256 DOI: 10.1074/jbc.ra118.003784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial nucleotidyl cyclase toxins are potent virulence factors that upon entry into eukaryotic cells are stimulated by endogenous cofactors to catalyze the production of large amounts of 3'5'-cyclic nucleoside monophosphates. The activity of the effector ExoY from Pseudomonas aeruginosa is stimulated by the filamentous form of actin (F-actin). Utilizing yeast phenotype analysis, site-directed mutagenesis, functional biochemical assays, and confocal microscopy, we demonstrate that the last nine amino acids of the C terminus of ExoY are crucial for the interaction with F-actin and, consequently, for ExoY's enzymatic activity in vitro and toxicity in a yeast model. We observed that isolated C-terminal sequences of P. aeruginosa ExoY that had been fused to a carrier protein bind to F-actin and that synthetic peptides corresponding to the extreme ExoY C terminus inhibit ExoY enzymatic activity in vitro and compete with the full-length enzyme for F-actin binding. Interestingly, we noted that various P. aeruginosa isolates of the PA14 family, including highly virulent strains, harbor ExoY variants with a mutation altering the C terminus of this effector. We found that these naturally occurring ExoY variants display drastically reduced enzymatic activity and toxicity. Our findings shed light on the molecular basis of the ExoY-F-actin interaction, revealing that the extreme C terminus of ExoY is critical for binding to F-actin in target cells and that some P. aeruginosa isolates carry C-terminally mutated, low-activity ExoY variants.
Collapse
Affiliation(s)
- Alexander Belyy
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Département de Microbiologie, 75724 Paris cedex 15, France and
| | - Louis Renault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Blandine Bourigault
- the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Daniel Ladant
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| | - Undine Mechold
- From the Institut Pasteur, CNRS UMR 3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie and
| |
Collapse
|