1
|
Li J, Zhai Y, Ge G, Xu Y, Wang C, Hu A, Han Y, Shan N, Liu B, Chen J, Wang W. Bacterial Community Composition and Function of Tropical River Ecosystem along the Nandu River on Hainan Island, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:382. [PMID: 36612703 PMCID: PMC9819888 DOI: 10.3390/ijerph20010382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Microorganisms play a pivotal role in nutrient cycling in aquatic ecosystems. Understanding bacterial diversity and its functional composition are crucial for aquatic ecology and protection. We investigated the bacterial community structure using 16S rRNA gene amplicons high-throughput sequencing in this study. Results showed that 105 amplicon sequence variants (ASVs) account for 43.8% of the total sequences shared by the Nandu River's lower, middle, and upper reach and the Songtao Reservoir. The dominant bacterial phylum in the Nandu River and its connected Songtao Reservoir were Proteobacteria and Actinobacteriota, respectively. The highest Chao1 and Shannon index values were found in the lower reach of the Nandu River. Beta diversity analysis showed the divergence in bacterial communities in the Nandu River and Songtao Reservoir, but not in different reaches. Among the water properties, based on the Mantel test, dissolved oxygen, total nitrogen, and nitrite significantly affected the bacterial communities. The functional profiles predicted by Tax4Fun2 showed that metabolism was the most abundant function group. The relative abundance of genetic information processing was significantly higher in the Songtao Reservoir than in the Nandu River, while the relative abundance of human diseases was significantly lower in the Songtao Reservoir than in the Nandu River. The appearance of the xenobiotics biodegradation and metabolism function group requires us to pay more attention to possible water pollution, especially at the upper reach of the Nandu River.
Collapse
Affiliation(s)
- Jinbiao Li
- School of Geographic Science, Nantong University, Nantong 226019, China
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yangni Zhai
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Guojian Ge
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yang Xu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Can Wang
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Anyong Hu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Yujie Han
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Nan Shan
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Bo Liu
- School of Geographic Science, Nantong University, Nantong 226019, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| | - Jinlin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
- State Environmental Protection Scientific Observation and Research Station for Ecological Environment of Lake Hulun Wetland, Hulunbuir 021000, China
| |
Collapse
|
2
|
Computational Portable Microscopes for Point-of-Care-Test and Tele-Diagnosis. Cells 2022; 11:cells11223670. [PMID: 36429102 PMCID: PMC9688637 DOI: 10.3390/cells11223670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In bio-medical mobile workstations, e.g., the prevention of epidemic viruses/bacteria, outdoor field medical treatment and bio-chemical pollution monitoring, the conventional bench-top microscopic imaging equipment is limited. The comprehensive multi-mode (bright/dark field imaging, fluorescence excitation imaging, polarized light imaging, and differential interference microscopy imaging, etc.) biomedical microscopy imaging systems are generally large in size and expensive. They also require professional operation, which means high labor-cost, money-cost and time-cost. These characteristics prevent them from being applied in bio-medical mobile workstations. The bio-medical mobile workstations need microscopy systems which are inexpensive and able to handle fast, timely and large-scale deployment. The development of lightweight, low-cost and portable microscopic imaging devices can meet these demands. Presently, for the increasing needs of point-of-care-test and tele-diagnosis, high-performance computational portable microscopes are widely developed. Bluetooth modules, WLAN modules and 3G/4G/5G modules generally feature very small sizes and low prices. And industrial imaging lens, microscopy objective lens, and CMOS/CCD photoelectric image sensors are also available in small sizes and at low prices. Here we review and discuss these typical computational, portable and low-cost microscopes by refined specifications and schematics, from the aspect of optics, electronic, algorithms principle and typical bio-medical applications.
Collapse
|
3
|
García-Cazorla Y, Vasconcelos V. Emergent marine toxins risk assessment using molecular and chemical approaches. EFSA J 2022; 20:e200422. [PMID: 35634545 PMCID: PMC9131614 DOI: 10.2903/j.efsa.2022.e200422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria harmful blooms represent a deviation to the normal equilibrium in planktonic communities involving a rapid and uncontrolled growth. Owing to the capacity to produce toxins as secondary metabolites, cyanobacteria may cause huge economic losses in the fishing and aquaculture industries and poisoning incidents to humans due to their accumulation in the food chain. The conditions which promote toxic blooms have not yet been fully understood, but climate change and anthropogenic intervention are pointed as significant factors. For the detection of toxins in edible marine organisms, the establishment of international regulations and compulsory surveillance has been probed as exceptionally effective. However, not regulation nor monitoring have been settled concerning emergent marine toxins. In the light of this scenario, it becomes essential to apply fast and reliable surveillance methodologies for the early detection of cyanobacterial blooms as well as the occurrence of emergent marine toxins. Shotgun metagenomic sequencing has potential to become a powerful diagnostic tool in the fields of food safety and One Health surveillance. This culture‐independent approach overcomes limitations of traditional microbiological techniques; it allows a quick and accurate assessment of a complex microbial community, including quantitative identification and functional characterisation, in a single experiment. In the framework of the EU‐FORA fellowship, with the final goal of evaluate metagenomics as a promising risk assessment tool, the fellow worked on the development of an innovative workflow through state‐of‐the‐art molecular and chemical analytical procedures. This work programme aims to evaluate the occurrence of emergent marine toxins and the producing organisms in Cabo Verde coastal cyanobacteria blooms. Our results show the outstanding potential of a holistic metagenomic approach for the risk assessment of emergent marine toxins and the producing organisms. Additionally, we have also highlighted its value for the identification and evaluation of secondary metabolites as natural bioactive compounds with biotechnological and industrial interest.
Collapse
Affiliation(s)
- Y García-Cazorla
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) Portugal
| | - V Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR) Portugal
| |
Collapse
|
4
|
Valadez-Cano C, Hawkes K, Calvaruso R, Reyes-Prieto A, Lawrence J. Amplicon-based and metagenomic approaches provide insights into toxigenic potential in understudied Atlantic Canadian lakes. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cyanobacterial blooms and their toxigenic potential threaten freshwater resources worldwide. In Atlantic Canada, despite an increase of cyanobacterial blooms in the last decade, little is known about the toxigenic potential and the taxonomic affiliation of bloom-forming cyanobacteria. In this study, we employed polymerase chain reaction (PCR) and metagenomic approaches to assess the potential for cyanotoxin and other bioactive metabolite production in Harvey Lake (oligotrophic) and Washademoak Lake (mesotrophic) in New Brunswick, Canada, during summer and early fall months. The PCR survey detected the potential for microcystin (hepatotoxin) and anatoxin-a (neurotoxin) production in both lakes, despite a cyanobacterial bloom only being visible in Washademoak. Genus-specific PCR associated microcystin production potential with the presence of Microcystis in both lakes. The metagenomic strategy provided insight into temporal variations in the microbial communities of both lakes. It also permitted the recovery of a near-complete Microcystis aeruginosa genome with the genetic complement to produce microcystin and other bioactive metabolites such as piricyclamide, micropeptin/cyanopeptolin, and aeruginosin. Our approaches demonstrate the potential for production of a diverse complement of bioactive compounds and establish important baseline data for future studies of understudied lakes, which are frequently affected by cyanobacterial blooms.
Collapse
Affiliation(s)
- Cecilio Valadez-Cano
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Kristen Hawkes
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Rossella Calvaruso
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| | - Janice Lawrence
- Department of Biology, University of New Brunswick, PO Box 4400, Fredericton, NB, E3B 5A3, Canada
| |
Collapse
|
5
|
|
6
|
Churro C, Semedo-Aguiar AP, Silva AD, Pereira-Leal JB, Leite RB. A novel cyanobacterial geosmin producer, revising GeoA distribution and dispersion patterns in Bacteria. Sci Rep 2020; 10:8679. [PMID: 32457360 PMCID: PMC7251104 DOI: 10.1038/s41598-020-64774-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/21/2020] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are ubiquitous organisms with a relevant contribution to primary production in all range of habitats. Cyanobacteria are well known for their part in worldwide occurrence of aquatic blooms while producing a myriad of natural compounds, some with toxic potential, but others of high economical impact, as geosmin. We performed an environmental survey of cyanobacterial soil colonies to identify interesting metabolic pathways and adaptation strategies used by these microorganisms and isolated, sequenced and assembled the genome of a cyanobacterium that displayed a distinctive earthy/musty smell, typical of geosmin, confirmed by GC-MS analysis of the culture's volatile extract. Morphological studies pointed to a new Oscillatoriales soil ecotype confirmed by phylogenetic analysis, which we named Microcoleus asticus sp. nov. Our studies of geosmin gene presence in Bacteria, revealed a scattered distribution among Cyanobacteria, Actinobacteria, Delta and Gammaproteobacteria, covering different niches. Careful analysis of the bacterial geosmin gene and gene tree suggests an ancient bacterial origin of the gene, that was probably successively lost in different time frames. The high sequence similarities in the cyanobacterial geosmin gene amidst freshwater and soil strains, reinforce the idea of an evolutionary history of geosmin, that is intimately connected to niche adaptation.
Collapse
Affiliation(s)
- Catarina Churro
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal.
- Blue Biotechnology and Ecotoxicology (BBE), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208, Matosinhos, Portugal.
| | - Ana P Semedo-Aguiar
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Programa de Pós-Graduação Ciência para o Desenvolvimento, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Universidade Jean Piaget de Cabo Verde, Campus da Praia, Caixa Postal 775, Palmarejo Grande, Praia, Cabo Verde
| | - Alexandra D Silva
- Laboratório de Fitoplâncton, Departamento do Mar e Recursos Marinhos, Instituto Português do Mar e da Atmosfera, Rua Alfredo Magalhães Ramalho, 6, 1449-006, Lisboa, Portugal
| | - Jose B Pereira-Leal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
- Ophiomics-Precision Medicine, Pólo Tecnológico de Lisboa, Rua Cupertino de Miranda, 9, Lote 8, 1600-513, Lisbon, Portugal
| | - Ricardo B Leite
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande n°6, 2780-156, Oeiras, Portugal
| |
Collapse
|
7
|
Temporal and Spatial Study of Water Quality and Trophic Evaluation of a Large Tropical Reservoir. ENVIRONMENTS 2019. [DOI: 10.3390/environments6060061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A water quality study was carried out at the Adolfo López Mateos (ALM) reservoir, one of the largest tropical reservoirs in Mexico, located within an intensive agricultural region. In this study, the seasonal and spatial variations of nine water quality parameters were evaluated at four different sites along the reservoir semiannually over a period of seven years (2012–2018), considering the spring (dry) and fall (rainy) seasons. An analysis of variance was performed to compare the mean values of the water quality parameters for the different sampling sites. Then, a multiparametric classification analysis was carried out to estimate the spatial density of the sampling points by using a probabilistic neural network (PNN) classifier. The observations (seasonal and spatial) of the water quality parameters at the ALM reservoir revealed no significant influence. The trophic status was evaluated using the Carlson Modified Trophic State Index, finding the trophic state of the reservoir at the mesotrophic level, with nitrogen being the limiting nutrient. The PNN revealed neural interactions between total suspended solids (TSS) and the other four parameters, indicating that the concentration ranges of five parameters are equally distributed and classified.
Collapse
|