1
|
Slezák J, Ravingerová T, Kura B. New possibilities of the prevention and treatment of cardiovascular pathologies. the potential of molecular hydrogen in the reduction of oxidative stress and its consequences. Physiol Res 2024; 73:S671-S684. [PMID: 39808170 DOI: 10.33549/physiolres.935491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Disproportion between reactive oxygen species (ROS) production and the body's antioxidant system can cause oxidative stress, which is considered a common denominator in various pathological conditions, including cardiovascular diseases, aging, and cognitive disorders. The generation of free radicals, which occurs through partial reduction of oxygen, can quickly overwhelm the endogenous antioxidant system capacity of the cell. This causes lipid, protein, DNA and RNA damage, inflammation, and overall cell degeneration, which can be mitigated by various antioxidants. However, their use in human medicine did not bring the expected effect. Molecular hydrogen (H2), due to its unique physical and chemical properties, provides a number of benefits for alleviating oxidative stress. H2 is superior to conventional antioxidants as it can selectively reduce (.)OH radicals while preserving important ROS that are otherwise used for normal cell signaling. Key words Oxidative stress, Cardiovascular diseases, Molecular hydrogen, ROS, Inflammation.
Collapse
Affiliation(s)
- J Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
2
|
Wang Q, Wang Y, Wang Y, Zhang Q, Mi J, Ma Q, Li T, Huang S. Agaro-oligosaccharides mitigate deoxynivalenol-induced intestinal inflammation by regulating gut microbiota and enhancing intestinal barrier function in mice. Food Funct 2024; 15:3380-3394. [PMID: 38498054 DOI: 10.1039/d3fo04898e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Agarose-derived agaro-oligosaccharides (AgaroS) have been extensively studied in terms of structures and bioactivities; they reportedly possess antioxidant and anti-inflammatory activities that maintain intestinal homeostasis and host health. However, the protective effects of AgaroS on deoxynivalenol (DON)-induced intestinal dysfunction remain unclear. We investigated the effects of AgaroS on DON-induced intestinal dysfunction in mice and explored the underlying protective mechanisms. In total, 32 mice were randomly allocated to four treatments (n = 8 each) for 28 days. From day 1 to day 21, the control (CON) and DON groups received oral phosphate-buffered saline (200 μL per day); the AgaroS and AgaroS + DON groups received 200 mg AgaroS per kg body weight once daily by orogastric gavage. Experimental intestinal injury was induced by adding DON (4.8 mg per kg body weight) via gavage from day 21 to day 28. Phosphate-buffered saline was administered once daily by gavage in the CON and AgaroS groups. Herein, AgaroS supplementation led to a higher final body weight and smaller body weight loss and a lower concentration of plasma inflammatory cytokines, compared with the DON group. The DON group showed a significantly reduced ileal villus height and villus height/crypt depth, compared with the CON and AgaroS + DON groups. However, AgaroS supplementation improved DON-induced intestinal injury in mice. Compared with the DON group, ileal and colonic protein expression levels of claudin, occludin, Ki67, and mucin2 were significantly higher in the AgaroS supplementation group. Colonic levels of the anti-inflammatory cytokine IL-1β tended to be higher in the DON group than in the AgaroS + DON group. AgaroS altered the gut microbiota composition, accompanied by increased production of short-chain fatty acids in mice. In conclusion, our findings highlight a promising anti-mycotoxin approach whereby AgaroS alleviate DON-induced intestinal inflammation by modulating intestinal barrier functional integrity and gut microbiota in mice.
Collapse
Affiliation(s)
- Qingfeng Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- School of Life Sciences, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Yue Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiyue Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 21001, Liaoning, China
| | - Jinqiu Mi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| | - Tiantian Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
- Feed Safety and Healthy Livestock, Beijing Jingwa Agricultural Innovation Center, Beijing, China
| |
Collapse
|
3
|
Korovljev D, Todorovic N, Ranisavljev M, Andjelic B, Kladar N, Stajer V, Ostojic SM. Hydrogen-rich water upregulates fecal propionic acid levels in overweight adults. Nutrition 2023; 116:112200. [PMID: 37734117 DOI: 10.1016/j.nut.2023.112200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Marijana Ranisavljev
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Bogdan Andjelic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia; Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Nebojsa Kladar
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia; Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway; Faculty of Health Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
4
|
Chen X, Qiao T, Mao Z, Jia G, Zhao H, Liu G, Huang Z. Caffeic acid improves intestinal barrier functions by regulating colonic bacteria and tight junction protein expression and alleviating inflammation in weaning piglets. Anim Biotechnol 2023; 34:3693-3699. [PMID: 37067399 DOI: 10.1080/10495398.2023.2200441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The experiment investigated the effect of caffeic acid on bacteria, short-chain fatty acids (SCFA), and the expression of tight junction protein and inflammation related genes in the colon of weaning piglets. Thirty-six weaning piglets were allocated to three treatment groups, which were fed with a basal diet, a basal diet supplemented with 250 mg/kg or 500 mg/kg caffeic acid for 28 days. The results showed that caffeic acid treatment increased the contents of acetate acid, propionate acid and total SCFA. Moreover, real-time quantitative PCR showed that the number of Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.05) were increased and the number of Escherichia coli (p < 0.05) was decreased by caffeic acid in colonic mucosa. Real-time quantitative PCR also showed that the mRNA levels of zonula occludens-1 (p < 0.01), claudin-1 (p < 0.01), occludin (p < 0.01), mucin 1 (MUC1) (p < 0.01), MUC2 (p < 0.01), interleukin 4 (IL-4) (p < 0.01) and IL-10 (p < 0.05) were increased, while the mRNA expression levels of histone deacetylases (p < 0.01), IL-1 (p < 0.01), IL-6 (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.01) were decreased, by caffeic acid in colonic mucosa. These results suggested that caffeic acid could improve intestinal barrier function in weaned pigs, which might be mediated by regulating colonic bacteria and tight junction protein expression and alleviating inflammation.
Collapse
Affiliation(s)
- Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Tianlei Qiao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhengyu Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Tan T, Chen T, Zhu W, Gong L, Yan Y, Li Q, Chen L, Li Y, Liu J, Li Y, Yang X, Hao L, Wang H, Yang N, Wei S. Adverse associations between maternal deoxynivalenol exposure and birth outcomes: a prospective cohort study in China. BMC Med 2023; 21:328. [PMID: 37635232 PMCID: PMC10464359 DOI: 10.1186/s12916-023-03011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Deoxynivalenol (DON), one of the most prevalent mycotoxins, has been found to cause fetal growth retardation in animals. However, limited evidence exists regarding its effects on pregnant women. METHODS Maternal urinary concentration of total DON (tDON) and free DON (fDON) in the second trimester was measured using liquid chromatography with tandem mass spectrometry. Provisional daily intake (PDI) of DON was calculated based on tDON concentration. Linear and logistic regression models were used to evaluate the association between DON exposure levels and birth weight, birth length, and the risk of small for gestational age (SGA). RESULTS Among 1538 subjects, the median concentrations of tDON and fDON were 12.1 ng/mL and 5.1 ng/mL, respectively. The PDI values revealed that the median DON intake was 0.7 µg/kg bw, and 35.9% of the total population exceeded the provisional maximum tolerable daily intake (PMTDI) of 1 µg/kg bw. Compared with the lowest tertile, birth weight decreased by 81.11 g (95% CI: -127.00, -35.23) for tDON (P-trend < 0.001) and 63.02 g (95% CI: -108.72, -17.32) for fDON (P-trend = 0.004) in the highest tertile. Each unit increase in Ln-tDON and Ln-fDON was also inversely associated with birth weight. Furthermore, compared to those who did not exceed PMTDI, pregnant women whose PDI exceeded PMTDI had lower birth weight (β = -79.79 g; 95% CI: -119.09, -40.49) and birth length (β = -0.21 cm; 95% CI: -0.34, -0.07), and a higher risk of SGA (OR = 1.48; 95% CI: 1.02, 2.15) in their offspring. Similar associations with birth weight, birth length, and SGA were found when comparing the highest tertile of PDI to the lowest tertile (all P-trend < 0.05). CONCLUSIONS Maternal DON exposure is related to decreased birth weight. Our findings implicate that DON exposure during pregnancy may cause fetal growth faltering, and measures should be taken to reduce DON exposure in pregnant women.
Collapse
Affiliation(s)
- Tianqi Tan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Tingting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Wenwen Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lin Gong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yizhong Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Yiling Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Jialin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Yanan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Huaiji Wang
- Wuhan Center for Disease Control and Prevention, Institute of Environmental Health, 288 Machang Road, Wuhan, 430022, Hubei, China.
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Sheng Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Hu H, Zhu H, Yang H, Yao W, Zheng W. In vitro fermentation properties of magnesium hydride and related modulation effects on broiler cecal microbiome and metabolome. Front Microbiol 2023; 14:1175858. [PMID: 37621394 PMCID: PMC10445219 DOI: 10.3389/fmicb.2023.1175858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Magnesium hydride (MGH), a highly promising hydrogen-producing substance/additive for hydrogen production through its hydrolysis reaction, has the potential to enhance broiler production. However, before incorporating MGH as a hydrogen-producing additive in broiler feed, it is crucial to fully understand its impact on microbiota and metabolites. In vitro fermentation models provide a fast, reproducible, and direct assessment tool for microbiota metabolism and composition. This study aims to investigate the effects of MGH and coated-magnesium hydride (CMG) on fermentation characteristics, as well as the microbiota and metabolome in the culture of in vitro fermentation using cecal inocula from broilers. After 48 h of incubation, it was observed that the presence of MGH had a significant impact on various factors. Specifically, the content of N-NH3 decreased, while the total hydrogen gas and total SCFAs increased. Furthermore, the presence of MGH promoted the abundance of SCFA-producing bacteria such as Ruminococcus, Blautia, Coprobacillus, and Dysgonomonas. On the other hand, the presence of CMG led to an increase in the concentration of lactic acid, acetic acid, and valeric acid. Additionally, CMG affected the diversity of microbiota in the culture, resulting in an enrichment of the relative abundance of Firmicutes, as well as genera of Lactobacillus, Coprococcus, and Eubacterium. Conversely, the relative abundance of the phylum Proteobacteria and pathogenic bacteria Shigella decreased. Metabolome analysis revealed that MGH and CMG treatment caused significant changes in 21 co-regulated metabolites, primarily associated with lipid, amino acid, benzenoids, and organooxygen compounds. Importantly, joint correlation analysis revealed that MGH or CMG treatments had a direct impact on the microbiota, which in turn indirectly influenced metabolites in the culture. In summary, the results of this study suggested that both MGH and coated-MGH have similar yet distinct positive effects on the microbiota and metabolites of the broiler cecal in an in vitro fermentation model.
Collapse
Affiliation(s)
- Heng Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - He Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Zheng W, Zhao Z, Yang Y, Ding L, Yao W. The synbiotic mixture of lactulose and Bacillus coagulans protects intestinal barrier dysfunction and apoptosis in weaned piglets challenged with lipopolysaccharide. J Anim Sci Biotechnol 2023; 14:80. [PMID: 37301956 DOI: 10.1186/s40104-023-00882-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactulose as an effective prebiotic protects intestinal mucosal injury. Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health. Our previous study suggests that the combination of lactulose and Bacillus coagulans may be a good candidate as alternative for antibiotic growth promoters. However, the in vivo effects of lactulose and Bacillus coagulans on growth and intestinal health under immune challenge in piglets remains unclear. The objective of this study is to explore the protective effects of synbiotic containing lactulose and Bacillus coagulans on the intestinal mucosal injury and barrier dysfunction under immune challenge in weaned piglets. METHODS Twenty four weaned piglets were assigned to 4 groups. Piglets in the CON-saline and LPS-LPS group were fed the basal diet, while others were fed either with chlortetracycline (CTC) or synbiotic mixture of lactulose and Bacillus coagulans for 32 d before injection of saline or lipopolysaccharide (LPS). Piglets were sacrificed 4 h after LPS injection to collect samples to determine intestinal morphology, integrity and barrier functions as well as relative genes and proteins. RESULTS Our data showed that no differences were observed in the growth performance of the four test groups. LPS injection induced higher serum diamine oxidase activities, D-lactic acid levels, and endotoxin status, lower villus height and ratio of villus height to crypt depth, greater mRNA and lower protein expression related tight junction in both jejunum and ileum. In addition, a higher apoptosis index, and protein expression of Bax and caspase-3 were also observed in the LPS challenge group. Interestingly, dietary synbiotic mixture with lactulose and Bacillus coagulans protected against LPS-induced intestinal damage, barrier dysfunction and higher apoptosis as well as CTC. CONCLUSIONS Our data suggest that dietary supplementation of synbiotic mixture with lactulose and Bacillus coagulans showed resilience to LPS-induced intestinal morphological damage, barrier dysfunction and aggressive apoptosis in piglets as well as the protective effects of CTC. These results indicate that synbiotic mixture of lactulose and Bacillus coagulans showed beneficial effects on performance and resilience to acute immune stress in weaned piglets.
Collapse
Affiliation(s)
- Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zuyan Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liren Ding
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
8
|
Rahman MH, Jeong ES, You HS, Kim CS, Lee KJ. Redox-Mechanisms of Molecular Hydrogen Promote Healthful Longevity. Antioxidants (Basel) 2023; 12:988. [PMID: 37237854 PMCID: PMC10215238 DOI: 10.3390/antiox12050988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related diseases represent the largest threat to public health. Aging is a degenerative, systemic, multifactorial and progressive process, coupled with progressive loss of function and eventually leading to high mortality rates. Excessive levels of both pro- and anti-oxidant species qualify as oxidative stress (OS) and result in damage to molecules and cells. OS plays a crucial role in the development of age-related diseases. In fact, damage due to oxidation depends strongly on the inherited or acquired defects of the redox-mediated enzymes. Molecular hydrogen (H2) has recently been reported to function as an anti-oxidant and anti-inflammatory agent for the treatment of several oxidative stress and aging-related diseases, including Alzheimer's, Parkinson's, cancer and osteoporosis. Additionally, H2 promotes healthy aging, increases the number of good germs in the intestine that produce more intestinal hydrogen and reduces oxidative stress through its anti-oxidant and anti-inflammatory activities. This review focuses on the therapeutic role of H2 in the treatment of neurological diseases. This review manuscript would be useful in knowing the role of H2 in the redox mechanisms for promoting healthful longevity.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Hae Sun You
- Department of Anesthesiology & Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| |
Collapse
|
9
|
Effects of Exposure to Low Zearalenone Concentrations Close to the EU Recommended Value on Weaned Piglets’ Colon. Toxins (Basel) 2023; 15:toxins15030206. [PMID: 36977097 PMCID: PMC10055674 DOI: 10.3390/toxins15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pigs are the most sensitive animal to zearalenone (ZEN) contamination, especially after weaning, with acute deleterious effects on different health parameters. Although recommendations not to exceed 100 µg/kg in piglets feed exists (2006/576/EC), there are no clear regulations concerning the maximum limit in feed for piglets, which means that more investigations are necessary to establish a guidance value. Due to these reasons, the present study aims to investigate if ZEN, at a concentration lower than the EC recommendation for piglets, might affect the microbiota or induce changes in SCFA synthesis and can trigger modifications of nutritional, physiological, and immunological markers in the colon (intestinal integrity through junction protein analysis and local immunity through IgA production). Consequently, the effect of two concentrations of zearalenone were tested, one below the limit recommended by the EC (75 µg/kg) and a higher one (290 µg/kg) for comparison reasons. Although exposure to contaminated feed with 75 µg ZEN/kg feed did not significantly affect the observed parameters, the 290 µg/kg feed altered several microbiota population abundances and the secretory IgA levels. The obtained results contribute to a better understanding of the adverse effects that ZEN can have in the colon of young pigs in a dose-dependent manner.
Collapse
|
10
|
Abstract
Living a healthy lifestyle is the most important need in the world today. However, oxidative stress (OS) is caused by several stress-inducing factors such as smoking, alcohol consumption, chronic diseases, and inflammatory responses, oxygen-free radicals are produced in excess and can damage major organs in the body. This phenomenon has been implicated in the pathogenesis of several gastrointestinal (GI) diseases, including gastritis, constipation, and inflammatory bowel diseases, which include Crohn’s disease, ulcerative colitis, functional dyspepsia, acid reflux, diverticular disease, and irritable bowel syndrome. In this review article, we provide a brief overview of the role of OS in the pathogenesis of GI disorders. Additionally, we discuss the therapeutic role of alkaline-reduced water (ARW) on GI diseases and existing studies on ARW related to GI diseases. Furthermore, we believe that findings from this review article will enhance the knowledge of the readers on the role of ARW on OS and inflammation-based GI diseases.
Collapse
|
11
|
Jin J, Beekmann K, Ringø E, Rietjens IM, Xing F. Interaction between food-borne mycotoxins and gut microbiota: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
LeBaron TW, Asgharzadeh F, Khazei M, Kura B, Tarnava A, Slezak J. Molecular hydrogen is comparable to sulfasalazine as a treatment for DSS-induced colitis in mice. EXCLI JOURNAL 2021; 20:1106-1117. [PMID: 34345230 PMCID: PMC8326503 DOI: 10.17179/excli2021-3762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Colitis is an inflammatory condition of the bowels associated with abdominal pain, diarrhea, fatigue, and fever. Its etiology is multifactorial but related to the overproduction of inflammatory and oxidative mediators. There is currently no cure for this disease, and drugs used to manage it often have deleterious side effects. H2 is recognized as having anti-inflammatory and antioxidant effects, which may qualify it as a novel therapeutic for colitis. We induced an acute model of colitis in mice by administering dextran sulfate sodium (DSS) in drinking water for seven days. Mice were divided into five groups (n=6); normal, colitis, H2-treated colitis, sulfasalazine-treated colitis, and H2 plus sulfasalazine-treated colitis. From days three to ten, mice were given H2, sulfasalazine, or both. H2 was administered via dissolving a hydrogen-generating tablet in water to make hydrogen-rich water (HRW), which was ingested ad libitum and via oral gavage (200 μL). The Disease Activity Index (DAI), histological changes, and markers of inflammation and oxidative stress were assessed. HRW and sulfasalazine significantly improved bodyweight, DAI, mucosal damage, crypt loss, and spleen weight compared to control. Both treatments significantly decreased inflammation (high-sensitive C-reactive protein) and restored redox balance (total thiol, superoxide dismutase, catalase activity). There was a trend for the combination treatment to be more effective than either HRW or sulfasalazine alone. Furthermore, HRW tended to be as effective as, and often more effective than, sulfasalazine. HRW may serve as a therapeutic for ameliorating DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Tyler W LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic.,Molecular Hydrogen Institute, Utah, USA.,Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, 84720, Utah, USA
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic
| | - Alex Tarnava
- Drink HRW and Natural Wellness Now Health Products Inc., Unit C 60, Braid St, New Westminster, BC, Canada
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
13
|
Li L, Lou W, Kong L, Shen W. Hydrogen Commonly Applicable from Medicine to Agriculture: From Molecular Mechanisms to the Field. Curr Pharm Des 2021; 27:747-759. [PMID: 33290194 DOI: 10.2174/1381612826666201207220051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
The emerging field of hydrogen biology has to date mainly been applied in medicine. However, hydrogen biology can also enable positive outcomes in agriculture. Agriculture faces significant challenges resulting from a growing population, climate change, natural disasters, environmental pollution, and food safety issues. In fact, hydrogen agriculture is a practical application of hydrogen biology, which may assist in addressing many of these challenges. It has been demonstrated that hydrogen gas (H2) may enhance plant tolerance towards abiotic and biotic stresses, regulate plant growth and development, increase nutritional values, prolong the shelf life, and decrease the nitrite accumulation during the storage of vegetables, as well as increase the resilience of livestock to pathogens. Our field trials show that H2 may have a promising potential to increase yield and improve the quality of agricultural products. This review aims to elucidate mechanisms for a novel agricultural application of H2 in China. Future development of hydrogen agriculture is proposed as well. Obviously, hydrogen agriculture belongs to a low carbon economy, and has great potential to provide "safe, tasty, healthy, and high-yield" agricultural products so that it may improve the sustainability of agriculture.
Collapse
Affiliation(s)
- Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Lou
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
|
15
|
Raj J, Vasiljević M, Tassis P, Farkaš H, Männer K. Efficacy of a multicomponent mycotoxin detoxifying agent on concurrent exposure to zearalenone and T-2 mycotoxin in weaned pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Jia R, Liu W, Zhao L, Cao L, Shen Z. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicol Lett 2020; 333:159-169. [PMID: 32783910 DOI: 10.1016/j.toxlet.2020.07.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
The intestinal epithelium is the first barrier against food contaminants and is highly sensitive to Fusarium toxins, especially deoxynivalenol (DON) and zearalenone (ZEA). Here, we explored the effects of low doses of DON and/or ZEA in naturally moldy diets on intestinal functions in piglets, including inflammatory responses, epithelial barrier, and microbial composition. Piglets were treated with a control diet (CON), DON diet (1000.6 μg/kg), ZEA diet (269.1 μg/kg), and DON + ZEA diet (1007.5 + 265.4 μg/kg), respectively, for 3 weeks and then switched to the same CON diet for another 2 weeks. In the first period, even the selected low doses of DON or ZEA in the diet resulted in intestinal inflammation, diminish protein expression (claudin-4) and altered gut microbiota populations. Whereas upon switching to the CON diet for another 2 weeks, the deleterious effect of ZEA and DON on IL-1β and Bifidobacterium population could not be recovered. Additionally, combined DON and ZEA negatively affected body weight gain and feed consumption of piglets, as well as shown synergistic effects on evoking pro-inflammatory cytokines contents (TNF-α, IL-1β, and IL-6) and perturbing the cecum microbiota profile (E. coli, Lactobacillus, and Bifidobacterium). Collectively, chronic consumption of DON and ZEA contaminated feed or food, even at low doses, can induce intestinal damage and may have consequences for animal and human health.
Collapse
Affiliation(s)
- Ru Jia
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| | - Wenbin Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lirong Cao
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Zhuoyu Shen
- School of Life Science, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
17
|
Does drinking water rich in hydrogen gas revive brain hypometabolism in neurodegeneration by SCFAs upregulation? Eur J Clin Nutr 2020; 75:212-213. [PMID: 32632247 DOI: 10.1038/s41430-020-0680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/02/2020] [Accepted: 06/29/2020] [Indexed: 11/08/2022]
|
18
|
Wang S, Zhang C, Yang J, Wang X, Wu K, Zhang B, Zhang J, Yang A, Rajput SA, Qi D. Sodium Butyrate Protects the Intestinal Barrier by Modulating Intestinal Host Defense Peptide Expression and Gut Microbiota after a Challenge with Deoxynivalenol in Weaned Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4515-4527. [PMID: 32208605 DOI: 10.1021/acs.jafc.0c00791] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aims to determine whether sodium butyrate (SB) could antagonize deoxynivalenol (DON)-induced intestinal epithelial dysfunction. In a four-week feeding trial, twenty-eight barrows were randomly divided into four treatments: (1) uncontaminated basal diet (control); (2) 4 mg/kg DON-contaminated diet (DON); (3) basal diet supplemented with 0.2% SB (SB); and (4) 4 mg/kg DON + 0.2% SB (DON + SB). A decrease in performance was observed in DON-exposed animals, which was prevented by the dietary SB supplementation. DON exposure also depressed the expression of host defense peptides (HDPs) in the intestine, impaired the intestinal barrier integrity, and disturbed the gut microbiota homeostasis. These alterations induced by DON were attenuated by SB supplementation. The supplementation of 0.2% SB ameliorated the adverse effects of DON on the liver in terms of hepatic lesions as well as serum concentrations of alkaline phosphatase and aspartate aminotransferase. In IPEC-J2 cells, pretreatment with SB alleviated the DON-induced decreased cell viability. Additionally, the NOD2/caspase-12 pathway participated in the alleviation of SB on DON-induced diminished HDP expression. Taken together, these data demonstrated that SB protected piglets from DON-induced intestinal barrier dysfunction potentially through stimulation of intestinal HDP assembly and regulation in gut microbiota.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Cong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiacheng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiacai Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ao Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shahid Ali Rajput
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
19
|
Ji X, Zheng W, Yao W. Protective Role of Hydrogen Gas on Oxidative Damage and Apoptosis in Intestinal Porcine Epithelial Cells (IPEC-J2) Induced by Deoxynivalenol: A Preliminary Study. Toxins (Basel) 2019; 12:E5. [PMID: 31861743 PMCID: PMC7020398 DOI: 10.3390/toxins12010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
To explore the protective role of hydrogen gas (H2) on oxidative damage and apoptosis in intestinal porcine epithelial cells (IPEC-J2) induced by deoxynivalenol (DON), cells were assigned to four treatment groups, including control, 5 μM DON, H2-saturated medium, and 5 μM DON + H2-saturated medium treatments. After 12 h of different treatments, the cell viability, biomarkers of cell redox states, and gene expression of antioxidant enzymes and apoptosis were observed and detected. Furthermore, caspase-3 and Bax protein expressions were measured by Western blot analysis. Our results demonstrated that the 5 μM DON significantly caused cytotoxicity to IPEC-J2 cells by reducing cell viability and increasing lactate dehydrogenase release in culture supernatants. Moreover, DON treatments significantly increased levels of 8-hydroxy-2'-deoxyguanosine, 3-nitrotyrosine, and malonaldehyde; however, they decreased total superoxide dismutase and catalase activities and downregulated messenger RNA (mRNA) expression related to antioxidant enzymes in cells. The 5 μM DON treatment also downregulated Bcl-2 expression and upregulated caspase-3 and Bax expression. However, the H2-saturated medium significantly improved cell growth status and reversed the change of redox states and expression of genes and proteins related to apoptosis induced by DON in IPEC-J2 cells. In conclusion, H2 could protect IPEC-J2 cells from DON-induced oxidative damage and apoptosis in vitro.
Collapse
Affiliation(s)
- Xu Ji
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
| | - Weijiang Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Yao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.J.); (W.Z.)
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing 210095, China
| |
Collapse
|
20
|
Cieplińska K, Gajęcka M, Dąbrowski M, Rykaczewska A, Lisieska-Żołnierczyk S, Bulińska M, Zielonka Ł, Gajęcki MT. Time-Dependent Changes in the Intestinal Microbiome of Gilts Exposed to Low Zearalenone Doses. Toxins (Basel) 2019; 11:E296. [PMID: 31137638 PMCID: PMC6563319 DOI: 10.3390/toxins11050296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Zearalenone is a frequent contaminant of cereals and their by-products in regions with a temperate climate. This toxic molecule is produced naturally by Fusarium fungi in crops. The aim of this study was to determine the influence of low zearalenone doses (LOAEL, NOAEL and MABEL) on the intestinal microbiome of gilts on different days of exposure (days 7, 21 and 42). Intestinal contents were sampled from the duodenal cap, the third part of the duodenum, jejunum, caecum and the descending colon. The experiment was performed on 60 clinically healthy gilts with average BW of 14.5 ± 2 kg, divided into three experimental groups and a control group. Group ZEN5 animals were orally administered ZEN at 5 μg /kg BW, group ZEN10-10 μg ZEN/kg BW and group ZEN15-15 µg ZEN/kg BW. Five gilts from every group were euthanized on analytical dates 1, 2 and 3. Differences in the log values of microbial counts, mainly Escherichia coli and Enterococcus faecalis, were observed between the proximal and distal segments of the intestinal tract on different analytical dates as well as in the entire intestinal tract. Zearalenone affected the colony counts of intestinal microbiota rather than microbiome diversity, and its effect was greatest in groups ZEN10 and ZEN15. Microbial colony counts were similar in groups ZEN5 and C. In the analysed mycobiome, ZEN exerted a stimulatory effect on the log values of yeast and mould counts in all intestinal segments, in particular in the colon, and the greatest increase was noted on the first analytical date.
Collapse
Affiliation(s)
- Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, Limanowskiego 31A, 10-342 Olsztyn, Poland.
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Anna Rykaczewska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Sylwia Lisieska-Żołnierczyk
- Independent Public Health Care Centre of the Ministry of the Interior and Administration, and the Warmia and Mazury Oncology Centre in Olsztyn, Wojska Polskiego 37, 10-228 Olsztyn, Poland.
| | - Maria Bulińska
- Department of Discrete Mathematics and Theoretical Computer Science, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, Słoneczna 34, 10-710 Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland.
| |
Collapse
|
21
|
Alassane-Kpembi I, Pinton P, Oswald IP. Effects of Mycotoxins on the Intestine. Toxins (Basel) 2019; 11:toxins11030159. [PMID: 30871167 PMCID: PMC6468410 DOI: 10.3390/toxins11030159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/10/2019] [Indexed: 11/16/2022] Open
Affiliation(s)
- Imourana Alassane-Kpembi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
- Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi, 01BP2009 Abomey-Calavi, Bénin.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027 Toulouse, France.
| |
Collapse
|
22
|
Morphological and molecular response of small intestine to lactulose and hydrogen-rich water in female piglets fed Fusarium mycotoxins contaminated diet. J Anim Sci Biotechnol 2019; 10:9. [PMID: 30805184 PMCID: PMC6373143 DOI: 10.1186/s40104-019-0320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Following the intake of Fusarium mycotoxin-contaminated feed, small intestines may be exposed to high levels of toxic substances that can potentially damage intestinal functions in livestock. It is well known that Fusarium mycotoxins will lead a breakdown of the normally impeccable epithelial barrier, resulting in the development of a “leaky” gut. H2 administration with different methods has been proved definitely potentials to prevent serious intestinal diseases. The goal of this study is to investigate the roles of lactulose (LAC) and hydrogen-rich water (HRW) in preventing intestinal dysfunction in piglets fed Fusarium mycotoxin-contaminated feed. Methods A total of 24 female piglets were evenly assigned to 4 groups: negative control (NC) group, mycotoxin-contaminated (MC) feed group, MC feed with LAC treatment (MC + LAC), and MC feed with HRW treatment (MC + HRW), respectively. Piglets in the NC group were fed uncontaminated control diet, while remaining piglets were fed Fusarium mycotoxin-contaminated diet. For the NC and MC groups, 10 mL/kg body weight (BW) of hydrogen-free water (HFW) was orally administrated to piglets twice daily; while in the MC + LAC and MC + HRW groups, piglets were treated with the same dose of LAC solution (500 mg/kg BW) and HRW twice daily, respectively. On d 25, serum was collected and used for biochemical analysis. Intestinal tissues were sampled for morphological examination as well as relative genes and protein expression analysis. Results Our data showed that Fusarium mycotoxins induced higher serum diamine oxidase (DAO) activities (P < 0.05), D-lactic acid levels (P < 0.01), and endotoxin status (P < 0.01), lower villus height (P < 0.01) and ratio of villus height to crypt depth (P < 0.05) in small intestine, greater apoptosis index and higher mRNA expression related to tight junctions (P < 0.05). In addition, the distribution and down-regulation of claudin-3 (CLDN3) protein in the small intestinal was also observed. As expected, oral administrations of HRW and LAC were found to remarkably provide beneficial effects against Fusarium mycotoxin-induced apoptosis and intestinal leaking. Moreover, either HRW or LAC treatments were also revealed to prevent abnormal intestinal morphological changes, disintegrate tight junctions, and restore the expression and distribution of CLDN3 protein in the small intestinal mucosal layer in female piglets that were fed Fusarium mycotoxins contaminated diet. Conclusions Our data suggest that orally administrations of HRW and LAC result in less Fusarium mycotoxin-induced apoptosis and leak in the small intestine. Either HRW or LAC treatments could prevent the abnormal changes of intestinal morphology and molecular response of tight junctions as well as restore the distribution and expression of CLDN3 protein of small intestinal mucosa layer in female piglets that were fed Fusarium mycotoxins contaminated diet. Electronic supplementary material The online version of this article (10.1186/s40104-019-0320-2) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Tanaka Y, Saihara Y, Izumotani K, Nakamura H. Daily ingestion of alkaline electrolyzed water containing hydrogen influences human health, including gastrointestinal symptoms. Med Gas Res 2019; 8:160-166. [PMID: 30713669 PMCID: PMC6352572 DOI: 10.4103/2045-9912.248267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
In Japan, alkaline electrolyzed water (AEW) apparatus have been approved as a medical device. And for the patients with gastrointestinal symptoms, drinking AEW has been found to be effective in relieving gastrointestinal symptoms. But some users of AEW apparatus do not have abdominal indefinite complaint. Little attention has been given to the benefit for the users which have no abdominal indefinite complaint. The object of this study is to evaluate the effect on health, including gastrointestinal symptoms, when a person without abdominal indefinite complaint, etc., drinks AEW on a daily basis. A double-blind, randomized controlled trial has been designed. Four-week period of everyday water drinking, PW drinking group: drink purified tap water as a placebo, AEW drinking group: drink alkaline electrolyzed water which made by electrolysis of purified tap water. Before the experiment and after the 4-week period of water drinking, Blood tests, physical fitness evaluations, and questionnaire evaluations is conducted. In this study, we did not specifically select patients with gastrointestinal symptoms. Sufficiently clear effect could not be confirmed. But the stools were more normal, and, as shown in the previous report, that drinking AEW is considered to contribute to intestinal normalization. In addition, when drinking AEW, a high proportion of the respondents said that they felt they were able to sleep soundly, and the proportion of subjects who answered that they felt good when awakening increased. The effect of reducing oxidative stress, thus allowing for improved sleep, was exhibited by drinking AEW containing hydrogen, which is considered to be an antioxidant substance. This research were approved by the Ethics Committee of the Osaka City University Graduate School of Medicine (No. 837) and were registered in the University Hospital Medical Information Network (UMIN) Clinical Trials Registry (UMIN ID: UMIN000031800) on March 22, 2018.
Collapse
Affiliation(s)
| | | | | | - Hajime Nakamura
- Osaka City University, Graduate School of Medicine, Osaka, Japan
| |
Collapse
|