1
|
Sun K, Luo S, Jiang Y, Guo J, Wang X, Cheng K, Xu C, Zhang Y, Gao C, Lu J, Du P, Yu Y, Wang R, Yang Z, Zhou C. Neutralizing chimeric heavy-chain antibody targeting the L-HN domain of Clostridium botulinum neurotoxin type F. Arch Toxicol 2024; 98:4187-4195. [PMID: 39311906 DOI: 10.1007/s00204-024-03869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024]
Abstract
Botulinum toxin (BoNT) from Clostridium botulinum is the most toxic biotoxin known and is also an important bioterrorism agent. After poisoning, the only effective treatment is injection of antitoxin. However, neutralizing nanoantibodies are safer and more effective, representing a promising therapeutic approach. Therefore, it is important to obtain effective neutralizing nanoantibodies. Hence, the present study aimed to construct a phage antibody library by immunizing a camel and screening specific clones that bind to the L-HN domain of BoNT/F and constructing chimeric heavy-chain antibodies by fusing them with a human Fc fragment. The antibodies' affinity and in vivo neutralizing activities were evaluated. The results showed that 2 µg of F20 antibody could completely neutralize 20 × the median lethal dose (LD50) of BoNT/F in vitro. Injection of 5 mg/kg F20 at 1 h, 2 h, 3 h, and 4 h into mice after BoNT/F challenge resulted in complete survival in vivo. Overall, the antibody might be a candidate for the development of new drugs to treat botulism.
Collapse
Affiliation(s)
- Kaiyue Sun
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Shudi Luo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Kexuan Cheng
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yixiao Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China.
| | - Chunyang Zhou
- Institute of Materia Medica, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
2
|
Majou D. Endopeptidase activities of Clostridium botulinum toxins in the development of this bacterium. Res Microbiol 2024; 175:104216. [PMID: 38897423 DOI: 10.1016/j.resmic.2024.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
By-products like CO₂ and organic acids, produced during Clostridium botulinum growth, appear to inhibit its development and reduce ATP production. A decrease in ATP production creates an imbalance in the ATP/GTP ratio. GTP activates CodY, which regulates BoNT expression. This toxin is released into the extracellular medium. Its light chains act as a specific endopeptidase, targeting SNARE proteins. The specific amino acids released enter the cells and are metabolized by the Stickland reaction, resulting in the synthesis of ATP. This ATP might then be used by histidine kinases to activate Spo0A, the main regulator initiating sporulation, through phosphorylation.
Collapse
Affiliation(s)
- Didier Majou
- ACTIA, 149, Rue de Bercy, 75595 Paris Cedex 12, France.
| |
Collapse
|
3
|
Leka O, Wu Y, Zanetti G, Furler S, Reinberg T, Marinho J, Schaefer JV, Plückthun A, Li X, Pirazzini M, Kammerer RA. A DARPin promotes faster onset of botulinum neurotoxin A1 action. Nat Commun 2023; 14:8317. [PMID: 38110403 PMCID: PMC10728214 DOI: 10.1038/s41467-023-44102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
In this study, we characterize Designed Ankyrin Repeat Proteins (DARPins) as investigative tools to probe botulinum neurotoxin A1 (BoNT/A1) structure and function. We identify DARPin-F5 that completely blocks SNAP25 substrate cleavage by BoNT/A1 in vitro. X-ray crystallography reveals that DARPin-F5 inhibits BoNT/A1 activity by interacting with a substrate-binding region between the α- and β-exosite. This DARPin does not block substrate cleavage of BoNT/A3, indicating that DARPin-F5 is a subtype-specific inhibitor. BoNT/A1 Glu-171 plays a critical role in the interaction with DARPin-F5 and its mutation to Asp, the residue found in BoNT/A3, results in a loss of inhibition of substrate cleavage. In contrast to the in vitro results, DARPin-F5 promotes faster substrate cleavage of BoNT/A1 in primary neurons and muscle tissue by increasing toxin translocation. Our findings could have important implications for the application of BoNT/A1 in therapeutic areas requiring faster onset of toxin action combined with long persistence.
Collapse
Affiliation(s)
- Oneda Leka
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Sven Furler
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Thomas Reinberg
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Joana Marinho
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas V Schaefer
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Xiaodan Li
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, 35121, Padova, Italy
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland.
| |
Collapse
|
4
|
Fan Y, Sun Z, Conrad F, Wen W, Zhao L, Lou J, Zhou Y, Farr-Jones S, Marks JD. Multicolor fluorescence activated cell sorting to generate humanized monoclonal antibody binding seven subtypes of BoNT/F. PLoS One 2022; 17:e0273512. [PMID: 36048906 PMCID: PMC9436041 DOI: 10.1371/journal.pone.0273512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
Generating specific monoclonal antibodies (mAbs) that neutralize multiple antigen variants is challenging. Here, we present a strategy to generate mAbs that bind seven subtypes of botulinum neurotoxin serotype F (BoNT/F) that differ from each other in amino acid sequence by up to 36%. Previously, we identified 28H4, a mouse mAb with poor cross-reactivity to BoNT/F1, F3, F4, and F6 and with no detectable binding to BoNT/F2, F5, or F7. Using multicolor labeling of the different BoNT/F subtypes and fluorescence-activated cell sorting (FACS) of yeast displayed single-chain Fv (scFv) mutant libraries, 28H4 was evolved to a humanized mAb hu6F15.4 that bound each of seven BoNT/F subtypes with high affinity (KD 5.81 pM to 659.78 pM). In contrast, using single antigen FACS sorting, affinity was increased to the subtype used for sorting but with a decrease in affinity for other subtypes. None of the mAb variants showed any binding to other BoNT serotypes or to HEK293 or CHO cell lysates by flow cytometry, thus demonstrating stringent BoNT/F specificity. Multicolor FACS-mediated antibody library screening is thus proposed as a general method to generate multi-specific antibodies to protein subtypes such as toxins or species variants.
Collapse
Affiliation(s)
- Yongfeng Fan
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Zhengda Sun
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Fraser Conrad
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Weihua Wen
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Lequn Zhao
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Jianlong Lou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yu Zhou
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - Shauna Farr-Jones
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| | - James D. Marks
- Zuckerberg San Francisco General Hospital and Trauma Center, Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
5
|
Silva-Andrade C, Martin AJ, Garrido D. Comparative Genomics of Clostridium baratii Reveals Strain-Level Diversity in Toxin Abundance. Microorganisms 2022; 10:microorganisms10020213. [PMID: 35208668 PMCID: PMC8879937 DOI: 10.3390/microorganisms10020213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023] Open
Abstract
Clostridium baratii strains are rare opportunistic pathogens associated with botulism intoxication. They have been isolated from foods, soil and be carried asymptomatically or cause botulism outbreaks. Is not taxonomically related to Clostridium botulinum, but some strains are equipped with BoNT/F7 cluster. Despite their relationship with diseases, our knowledge regarding the genomic features and phylogenetic characteristics is limited. We analyzed the pangenome of C. baratii to understand the diversity and genomic features of this species. We compared existing genomes in public databases, metagenomes, and one newly sequenced strain isolated from an asymptomatic subject. The pangenome was open, indicating it comprises genetically diverse organisms. The core genome contained 28.49% of the total genes of the pangenome. Profiling virulence factors confirmed the presence of phospholipase C in some strains, a toxin capable of disrupting eukaryotic cell membranes. Furthermore, the genomic analysis indicated significant horizontal gene transfer (HGT) events as defined by the presence of prophage genomes. Seven strains were equipped with BoNT/F7 cluster. The active site was conserved in all strains, identifying a missing 7-aa region upstream of the active site in C. baratii genomes. This analysis could be important to advance our knowledge regarding opportunistic clostridia and better understand their contribution to disease.
Collapse
Affiliation(s)
- Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Alberto J. Martin
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580000, Chile;
- Correspondence: (A.J.M.); (D.G.)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (A.J.M.); (D.G.)
| |
Collapse
|
6
|
New Modified Recombinant Botulinum Neurotoxin Type F with Enhanced Potency. Toxins (Basel) 2021; 13:toxins13120834. [PMID: 34941672 PMCID: PMC8705745 DOI: 10.3390/toxins13120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are notorious toxins and powerful agents and can be lethal, causing botulism, but they are also widely used as therapeutics, particularly to treat neuromuscular disorders. As of today, the commercial BoNT treatments available are from native A or B serotypes. Serotype F has shown efficacy in a clinical trial but has scarcely been used, most likely due to its medium duration of effect. Previously, the uniqueness of the light chain of the F7 subtype was identified and reported, showing an extended interaction with its substrates, VAMPs 1, 2 and 3, and a superior catalytic activity compared to other BoNT/F subtypes. In order to more extensively study the properties of this neurotoxin, we engineered a modified F7 chimera, mrBoNT/F7-1, in which all the regions of the neurotoxin were identical to BoNT/F7 except the activation loop, which was the activation loop from BoNT/F1. Use of the activation loop from BoNT/F1 allowed easier post-translational proteolytic activation of the recombinant protein without otherwise affecting its properties. mrBoNT/F7-1 was expressed, purified and then tested in a suite of in vitro and in vivo assays. mrBoNT/F7-1 was active and showed enhanced potency in comparison to both native and recombinant BoNT/F1. Additionally, the safety profile remained comparable to BoNT/F1 despite the increased potency. This new modified recombinant toxin F7 could be further exploited to develop unique therapeutics to address unmet medical needs.
Collapse
|
7
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|