1
|
Yuan J, Li J, Du S, Wen Y, Wang Y, Lang YF, Wu R, Yan QG, Zhao S, Huang X, Zhao Q, Cao SJ. Revealing the lethal effects of Pasteurella multocida toxin on multiple organ systems. Front Microbiol 2024; 15:1459124. [PMID: 39257615 PMCID: PMC11385013 DOI: 10.3389/fmicb.2024.1459124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024] Open
Abstract
Pasteurella multocida toxin (PMT) is one of the most important virulence factors of Pasteurella multocida type D. Pasteurella multocida infection has caused enormous economic losses in the pig farming industry. Although it is well known that this bacterial infection causes progressive atrophic rhinitis, its effects on other organ tissues in pigs are unclear. In this study, PMT was expressed and purified, and the cytotoxic effects of PMT on four types of swine cells, LLC-PK1, PAM, IPEC, and ST, were investigated. LLC-PK1 exhibited the highest sensitivity to the cytotoxic effects of PMT. Our studies revealed that a PMT concentration of 0.1 μg/kg can lead to weight loss, whereas a PMT concentration of 0.5 μg/kg can lead to death in mice. PMT causes damage to the intestines, kidneys, lungs, livers, and spleens of mice. Furthermore, PMT caused acute death in pigs at treatment concentrations greater than 5 μg/kg; at PMT concentration of 2.5 μg/kg, weight loss occurred until death. PMT mainly caused damage to the hearts, lungs, livers, spleens and kidneys of pigs. The organ coefficient showed that damage to the heart and kidneys was the most severe and caused the renal pelvis and renal pyramid to dissolve and become cavitated. Pathology revealed hemorrhage in the lungs, liver, and spleen, and the kidneys were swollen and vacuolated, which was consistent with the damaged target organs in the mice. In conclusion, these findings demonstrate that PMT is extremely toxic in vitro and in vivo, causing damage to various organs of the body, especially the kidneys and lungs. This study provides a theoretical basis for the in-depth exploration of the cytotoxic effects of PMT on target organs.
Collapse
Affiliation(s)
- Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinfeng Li
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yi-Fei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi-Gui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - San-Jie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, China
- Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
2
|
Zhang J, Bai H, Bai M, Wang X, Li Z, Xue H, Wang J, Cui Y, Wang H, Wang Y, Zhou R, Zhu X, Xu M, Zhao X, Liu H. Bisphosphonate-incorporated coatings for orthopedic implants functionalization. Mater Today Bio 2023; 22:100737. [PMID: 37576870 PMCID: PMC10413202 DOI: 10.1016/j.mtbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/06/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Bisphosphonates (BPs), the stable analogs of pyrophosphate, are well-known inhibitors of osteoclastogenesis to prevent osteoporotic bone loss and improve implant osseointegration in patients suffering from osteoporosis. Compared to systemic administration, BPs-incorporated coatings enable the direct delivery of BPs to the local area, which will precisely enhance osseointegration and bone repair without the systemic side effects. However, an elaborate and comprehensive review of BP coatings of implants is lacking. Herein, the cellular level (e.g., osteoclasts, osteocytes, osteoblasts, osteoclast precursors, and bone mesenchymal stem cells) and molecular biological regulatory mechanism of BPs in regulating bone homeostasis are overviewed systematically. Moreover, the currently available methods (e.g., chemical reaction, porous carriers, and organic material films) of BP coatings construction are outlined and summarized in detail. As one of the key directions, the latest advances of BP-coated implants to enhance bone repair and osseointegration in basic experiments and clinical trials are presented and critically evaluated. Finally, the challenges and prospects of BP coatings are also purposed, and it will open a new chapter in clinical translation for BP-coated implants.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haotian Bai
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Miao Bai
- Department of Ocular Fundus Disease, Ophthalmology Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiaonan Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - ZuHao Li
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Haowen Xue
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yutao Cui
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Hui Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Yanbing Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rongqi Zhou
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xiujie Zhu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Mingwei Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| | - He Liu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, PR China
| |
Collapse
|
3
|
Liang W, Xiao H, Chen JY, Chang YF, Cao SJ, Wen YP, Wu R, Du SY, Yan QG, Huang XB, Zhao Q. Immunogenicity and protective efficacy of a multi-epitope recombinant toxin antigen of Pasteurella multocida against virulent challenge in mice. Vaccine 2023; 41:2387-2396. [PMID: 36872144 DOI: 10.1016/j.vaccine.2023.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.
Collapse
Affiliation(s)
- Wei Liang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Xiao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Yong Chen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - San-Jie Cao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Ping Wen
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sen-Yan Du
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi-Gui Yan
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Bo Huang
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center of Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
4
|
Kubatzky KF. Pasteurella multocida toxin - lessons learned from a mitogenic toxin. Front Immunol 2022; 13:1058905. [PMID: 36591313 PMCID: PMC9800868 DOI: 10.3389/fimmu.2022.1058905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Schoellkopf J, Mueller T, Hippchen L, Mueller T, Reuten R, Backofen R, Orth J, Schmidt G. Genome wide CRISPR screen for Pasteurella multocida toxin (PMT) binding proteins reveals LDL Receptor Related Protein 1 (LRP1) as crucial cellular receptor. PLoS Pathog 2022; 18:e1010781. [PMID: 36516199 PMCID: PMC9797058 DOI: 10.1371/journal.ppat.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.
Collapse
Affiliation(s)
- Julian Schoellkopf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Thomas Mueller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Lena Hippchen
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Teresa Mueller
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | - Raphael Reuten
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University, Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y, Mizoguchi I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol 2019; 10:2925. [PMID: 31921183 PMCID: PMC6923682 DOI: 10.3389/fimmu.2019.02925] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Osteoimmunology peeks into the interaction of bone and the immune system, which has largely proved to be a multiplex reaction. Osteocytes have been shown to regulate bone resorption through the expression of RANKL in physiologic and pathologic conditions. TNF-α, a product of the immune system, is an important cytokine regulating bone resorption in inflammatory conditions either directly or by increasing RANKL and M-CSF expressions by osteoblasts and stromal cells. The effect of TNF-α on a wide range of cell types has been documented; however, the direct effect of TNF-α on osteocytes has not been established yet. In this study, primary osteocytes were isolated by cell sorting from neonatal calvaria of Dmp1-Topaz mice, which express the green fluorescent protein under the influence of dentin matrix protein 1 promoter. The results show that osteocytes have a significantly higher RANKL mRNA expression when cultured with TNF-α. A co-culture system of osteocytes and TNF receptors I and II deficient osteoclast precursors treated with TNF-α show a significant increase in TRAP-positive cells while cultures without TNF-α failed to show TRAP-positive cells. Additionally, in vivo experiments of TNF-α injected to mouse calvaria show an increase in TRAP-positive cell number in the suture mesenchyme and an increase in the percentage of RANKL-positive osteocytes compared to PBS-injected calvaria. Osteocytes cultured with TNF-α show up-regulation of MAPKs phosphorylation measured by western blot, and adding MAPKs inhibitors to osteocytes cultured with TNF-α significantly decreases RANKL mRNA expression compared to osteocytes cultured with TNF-α alone. We also found that TNF-α activates the NF-κB pathway in osteocytes measured as a function of p65 subunit nuclear translocation. TNF-α directly affects osteocyte RANKL expression and increases osteoclastogenesis; our results demonstrate that osteocytes guard an important role in inflammatory bone resorption mediated by TNF-α.
Collapse
Affiliation(s)
- Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiko Kishikawa
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Saika Ogawa
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Wei-Ren Shen
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jiawei Qi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuhiko Nara
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|