1
|
Wu SW, Hsieh CY, Liu BH, Lin XJ, Yu FY. Novel antibody- and aptamer-based approaches for sensitive detection of mycotoxin fusaric acid in cereal. Food Chem 2024; 463:141245. [PMID: 39298849 DOI: 10.1016/j.foodchem.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Chia-Yu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Xin-Jie Lin
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Yan H, He B, Xie L, Cao X. A label-free electrochemical aptasensor based on NH 2-MIL-235(Fe) for the sensitive detection of citrinin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3702-3708. [PMID: 36103596 DOI: 10.1039/d2ay01243j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study successfully developed a simple, specific, and ultrasensitive electrochemical aptasensor based on a label-free strategy for detecting citrinin (CIT). The NH2-Fe-MOF nanomaterial has a large specific surface area, good biocompatibility, a simple preparation method, and low synthesis cost, so it was chosen as the aptamer's loading platform to improve the detection performance of the sensor. When CIT is present, the aptamer will specifically bind to it with a conformational change that prevents electron transfer to the electrode surface. Based on this, CIT could be quantitatively detected by measuring the change of differential pulse voltammetric (DPV) responses of the [Fe(CN)6]3-/4- peak current. Under optimized experimental conditions, the proposed aptasensor showed a low detection limit of 4.52 × 10-11 g mL-1 and a wide linear range of 0.1 to 1 × 104 ng mL-1. Furthermore, the proposed aptasensor shows excellent selectivity, reliable stability, and significant potential for the ultrasensitive detection of CIT in practical applications.
Collapse
Affiliation(s)
- Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Xiaoyu Cao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
3
|
Wu SW, Ko JL, Liu BH, Yu FY. Pilot production of a sensitive ELISA kit and an immunochromatographic strip for rapid detecting citrinin in fermented rice. RSC Adv 2022; 12:19981-19989. [PMID: 35865211 PMCID: PMC9264126 DOI: 10.1039/d2ra02823a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Citrinin (CTN) is a mycotoxin primarily produced by Monascus species. Excess consumption of CTN may lead to nephrotoxicity and hepatotoxicity. A pilot study for commercial production of competitive direct enzyme-linked immunosorbent assay (cdELISA) kit and an immunochromatographic strip (immunostrip) for screening CTN in red yeast rice is established in this study. The coating antibody and the CTN-horse radish peroxidase (HRP) concentrations were optimized to increase the sensitivity and specificity of cdELISA kit. The conjugation methods/ratios of CTN to HRP as well as the long-term stability of kit components were also evaluated. The IC50 and detection limit of the ELISA kit were determined to be 4.1 and 0.2 ng mL-1, respectively. Analysis of 20 red yeast rice samples using ELISA kits revealed the contamination levels of CTN from 64 to 29 404 ng g-1. The on-site rapid detection of CTN with the immunostrip showed that CTN levels in seven samples exceeded the regulatory limit of 5 ppm. Additionally, the coefficient correlation between the results of HPLC and ELISA kits of 20 samples was 0.96. Sensitive and convenient tools at commercial levels for detection of CTN contamination in food are established herein to protect the health of the public.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Medicine, Chung Shan Medical University Taichung 40201 Taiwan
| | - Jiunn-Liang Ko
- Graduate Institute of Medicine, Chung Shan Medical University Taichung 40201 Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University Taipei 10051 Taiwan +886-2-23123456-88602
| | - Feng-Yih Yu
- Department of Medical Research, Chung Shan Medical University Hospital Taichung 40201 Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University Taichung 40201 Taiwan +886-4-24730022-11816
| |
Collapse
|
4
|
Li W, Wang H, Yang S, Isak AN, Song Y, Zhang F, Mao D, Zhu X. Magnetism-Controllable Catalytic Activity of DNAzyme. Anal Chem 2022; 94:2827-2834. [PMID: 35104119 DOI: 10.1021/acs.analchem.1c04506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controllable regulation of enzyme activity is an important prerequisite for the in-depth application of enzymes, especially in today's intelligent era. However, irreversible regulation and cumbersome operation make this goal difficult to achieve. Here, by adopting magnetism and a harmless, noncontact, and time- and space-controllable physical element, we developed a system that could conveniently and reversibly regulate the activity of DNAzyme. In this system, the strands of the DNAzyme could be stretched or folded by applying or removing a magnetic field. Thereby, the conformation-dependent endonuclease activity of the DNAzyme could be facilely switched between an "OFF" and "ON" state. This system provides a reusable platform for the control of enzyme catalytic activity through magnetism, which provides guidance for further application in some related scientific research, especially the regulation of the activity of conformation-dependent polymers (DNAzymes, aptamers, and peptides).
Collapse
Affiliation(s)
- Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Hao Wang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Shiqi Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Albertina N Isak
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Fan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| |
Collapse
|
5
|
Zhou H, He C, Li Z, Huo J, Xue Y, Xu X, Qi M, Chen L, Hammock BD, Zhang J. Development of a Rapid Gold Nanoparticle Immunochromatographic Strip Based on the Nanobody for Detecting 2,4-DichloRophenoxyacetic Acid. BIOSENSORS 2022; 12:84. [PMID: 35200344 PMCID: PMC8869386 DOI: 10.3390/bios12020084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is a systemic conductive herbicide widely used across the world. With the large-scale and continuous use of 2,4-D, its possible harm to the environment and non-target organisms has attracted increasing attention, and the construction of a stable rapid on-site detection method is particularly important. In order to achieve on-site rapid detection of 2,4-D, we developed a gold nanoparticle immunochromatographic strip method with the visual elimination value was 50 ng/mL, and a quantitative detection limit of 11 ng/mL based on a nanobody. By combing with the color snap, the immunochromatographic strip could quantitatively analyze the amounts of 2,4-D. Meanwhile, a colorimetric card based on the true color of the test strips was developed for the qualitative analysis of 2,4-D on-site. The samples (water, fruits and vegetables) with and without 2,4-D were detected by the immunochromatographic strips, and the results showed the accuracy and reliability. Thus, this assay is a rapid and simple on-site analytical tool to detect and quantify 2,4-D levels in environmental samples, and the analytical results can be obtained in about ten minutes. In addition, the nanobody technology used in this study provides an inexhaustible supply of a relatively stable antibodies that can be archived as a nanobody, plasmid or even its sequence.
Collapse
Affiliation(s)
- Hui Zhou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Cong He
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Zhenfeng Li
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Yu Xue
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Xiaotong Xu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Meng Qi
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; (Z.L.); (B.D.H.)
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, China; (H.Z.); (C.H.); (Y.X.); (X.X.); (M.Q.); (L.C.)
| |
Collapse
|
6
|
Wu SW, Ko JL, Liu BH, Yu FY. A Sensitive Two-Analyte Immunochromatographic Strip for Simultaneously Detecting Aflatoxin M1 and Chloramphenicol in Milk. Toxins (Basel) 2020; 12:toxins12100637. [PMID: 33023105 PMCID: PMC7600427 DOI: 10.3390/toxins12100637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022] Open
Abstract
A two-analyte immunochromatographic strip (immunostrip) was developed for the simultaneous detection of aflatoxin M1 (AFM1) and chloramphenicol (CAP) in milk. Protein conjugates (AFM1-ovalbumin (OVA) and CAP-OVA) and goat anti-rabbit IgG were respectively drawn on nitrocellulose membrane as two test lines (T1 and T2) and a control line (C). The immunostrip was dipped into a well that contained a 200 μL milk sample, 5 μL AFM1 antibody-gold conjugates, and 8 μL CAP antibody-gold conjugates; the whole assay was completed in 15 min and the results could be interpreted visually or using a reader. This immunostrip has cut-off levels of 0.1 ng/mL and 0.5 ng/mL for AFM1 and CAP, respectively. Analysis of CAP and AFM1 in milk samples revealed that data from the immunostrip test agreed closely with those obtained from ELISA. The two-analyte immunostrip is a rapid way for on-site simultaneous detection of AFM1 and CAP in milk.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-W.W.); (J.-L.K.)
| | - Jiunn-Liang Ko
- Graduate institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (S.-W.W.); (J.-L.K.)
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Correspondence: (B.-H.L.); (F.-Y.Y.); Tel.: +886-2-23123456-88602 (B.-H.L.); +886-4-24730022-11816 (F.-Y.Y.)
| | - Feng-Yih Yu
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: (B.-H.L.); (F.-Y.Y.); Tel.: +886-2-23123456-88602 (B.-H.L.); +886-4-24730022-11816 (F.-Y.Y.)
| |
Collapse
|
7
|
Atapattu SN, Poole CF. Recent advances in analytical methods for the determination of citrinin in food matrices. J Chromatogr A 2020; 1627:461399. [PMID: 32823104 DOI: 10.1016/j.chroma.2020.461399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Citrinin is a toxic small organic molecule produced as a secondary metabolite by fungi types Penicillium, Monascus and Aspergillus and is known to contaminate various food commodities during postharvest stages of food production. During the last 10 years, most reported methods for citrinin analysis employed enzyme-linked immunosorbent assays or high-performance liquid chromatography. Over this same time period, liquid extraction, solid-phase extraction, dispersive liquid-liquid microextraction and QuEChERS were the most cited sample preparation and clean-up methods. In this review the advantages and disadvantages of the various sample preparation, separation and detection methods for citrinin analysis over the last decade are evaluated. Furthermore, current trends, emerging technologies and the future prospects of these methods are discussed.
Collapse
Affiliation(s)
| | - Colin F Poole
- Department of chemistry, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
8
|
Wu S, Wang M, Liu B, Yu F. Sensitive enzyme‐linked immunosorbent assay and gold nanoparticle immunochromatocgraphic strip for rapid detecting chloramphenicol in food. J Food Saf 2020. [DOI: 10.1111/jfs.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shih‐Wei Wu
- Graduate Institute of MedicineChung Shan Medical University Taichung Taiwan
| | - Min‐Ying Wang
- Graduate Institute of BiotechnologyNational Chung Hsing University Taichung Taiwan
| | - Biing‐Hui Liu
- Graduate Institute of Toxicology, College of MedicineNational Taiwan University Taipei Taiwan
| | - Feng‐Yih Yu
- Department of Medical ResearchChung Shan Medical University Hospital Taichung Taiwan
- Department of Biomedical SciencesChung Shan Medical University Taichung Taiwan
| |
Collapse
|
9
|
Chen E, Xu Y, Ma B, Cui H, Sun C, Zhang M. Carboxyl-Functionalized, Europium Nanoparticle-Based Fluorescent Immunochromatographic Assay for Sensitive Detection of Citrinin in Monascus Fermented Food. Toxins (Basel) 2019; 11:toxins11100605. [PMID: 31627364 PMCID: PMC6832703 DOI: 10.3390/toxins11100605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
A fluorescent immunochromatographic test strip (FICTS) based on the use of europium nanoparticles (EuNPs) was developed and applied to detect citrinin (CIT) in Monascus fermented food. The sensitivity of the immunoassay to detect CIT was greatly improved by the use of a specific monoclonal antibody to attach EuNPs to form a probe. Under optimum conditions, the visual detection limit was 2.5 ng/mL, and the detection limit of the instrument was 0.05 ng/mL. According to the results, the IC50 was 0.4 ng/mL. Matrix interference from various Monascus fermented foods was investigated in food sample detection. The immunosensor also demonstrated high recoveries (86.8-113.0%) and low relative standard deviations (RSDs) (1.8-15.3%) when testing spiked Monascus fermented food. The detection results of this method showed a good correlation (R2 > 0.98) with high-performance liquid chromatography (HPLC). The results showed that the FICTS method could be used as a rapid, sensitive method to detect CIT in Monascus fermented food.
Collapse
Affiliation(s)
- Erjing Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Ying Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Science (SLU), P.O. Box 7080, SE-75007 Uppsala, Sweden.
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
10
|
Huang W, Tu Z, Ning Z, He Q, Li Y. Development of Real-Time Immuno-PCR Based on Phage Displayed an Anti-Idiotypic Nanobody for Quantitative Determination of Citrinin in Monascus. Toxins (Basel) 2019; 11:toxins11100572. [PMID: 31575068 PMCID: PMC6832940 DOI: 10.3390/toxins11100572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/01/2023] Open
Abstract
Citrinin (CIT) is a mycotoxin that has been detected in agricultural products, feedstuff, and Monascus products. At present, research has been performed to develop methods for CIT detection, mainly through TLC, HPLC, biosensor, and immunoassay. The immunoassay method is popular with researchers because of its speed, economy, simplicity, and ease of control. However, mycotoxins are inevitably introduced during the determination. Immunoassays require the use of toxins coupled to carrier proteins or enzymes to make competitive antigens. In this study, anti-idiotypic nanobody X27 as CIT mimetic antigen was used as non-toxic surrogate reagents in immunoassay. Therefore, the X27-based real-time immuno-PCR (rtIPCR) method had been established after optimal experiments of annealing temperature and amplification efficiency of real-time PCR, concentration of coating antibody, phage X27, and methyl alcohol. The IC50 value of the established method in the present study is 9.86 ± 2.52 ng/mL, which is nearly equivalent to the traditional phage ELISA method. However, the linear range is of 0.1-1000 ng/mL, which has been broadened 10-fold compared to the phage ELISA method. Besides, the X27-based rtIPCR method has no cross-reactivity to the common mycotoxins, like aflatoxin B1 (AFB1), deoxynivalenol (DON), ochratoxin A (OTA), and zearalenone (ZEN). The method has also been applied to the determination of CIT in rice flour and flour samples, and the recovery was found to be in the range of 90.0-104.6% and 75.8-110.0% respectively. There was no significant difference in the results between the rtIPCR and UPLC-MS. The anti-idiotypic nanobody as a non-toxic surrogate of CIT makes rtIPCR a promising method for actual CIT analysis in Monascus products.
Collapse
Affiliation(s)
- Wenping Huang
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Zhenqiang Ning
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Jiangxi-OAI Joint Research Institute, Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Yang H, Wang X, Li Z, Guo Q, Yang M, Chen D, Wang C. The Effect of Blue Light on the Production of Citrinin in Monascus purpureus M9 by Regulating the mraox Gene through lncRNA AOANCR. Toxins (Basel) 2019; 11:toxins11090536. [PMID: 31540336 PMCID: PMC6784174 DOI: 10.3390/toxins11090536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Blue light, as an important environmental factor, can regulate the production of various secondary metabolites of Monascus purpureus M9, including mycotoxin-citrinin, pigments, and monacolin K. The analysis of citrinin in Monascus M9 exposed to blue light for 0 min./d, 15 min./d, and 60 min./d showed that 15 min./d of blue light illumination could significantly increase citrinin production, while 60 min./d of blue light illumination decreased citrinin production. Analysis of long non-coding RNA (LncRNA) was performed on the transcripts of Monascus M9 under three culture conditions, and this analysis identified an lncRNA named AOANCR that can negatively regulate the mraox gene. Fermentation studies suggested that alternate respiratory pathways could be among the pathways that are involved in the regulation of the synthesis of citrinin by environmental factors. Aminophylline and citric acid were added to the culture medium to simulate the process of generating cyclic adenosine monophosphate (cAMP) in cells under illumination conditions. The results of the fermentation showed that aminophylline and citric acid could increase the expression of the mraox gene, decrease the expression of lncRNA AOANCR, and reduce the yield of citrinin. This result also indicates a reverse regulation relationship between lncRNA AOANCR and the mraox gene. A blue light signal might regulate the mraox gene at least partially through lncRNA AOANCR, thereby regulating citrinin production. Citrinin has severe nephrotoxicity in mammals, and it is important to control the residual amout of citrinin in red yeast products during fermentation. LncRNA AOANCR and mraox can potentially be used as new targets for the control of citrinin production.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xufeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Di Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
12
|
Singh G, Velasquez L, Huet AC, Delahaut P, Gillard N, Koerner T. Development of a sensitive polyclonal antibody-based competitive indirect ELISA for determination of citrinin in grain-based foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1567-1573. [DOI: 10.1080/19440049.2019.1640895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gurmit Singh
- Food Research Division, Bureau of Chemical Safety, Food Directorate-HPFB, Health Canada, Ottawa, ON, Canada
| | - Ligia Velasquez
- Food Research Division, Bureau of Chemical Safety, Food Directorate-HPFB, Health Canada, Ottawa, ON, Canada
| | | | | | | | - Terry Koerner
- Food Research Division, Bureau of Chemical Safety, Food Directorate-HPFB, Health Canada, Ottawa, ON, Canada
| |
Collapse
|