1
|
Jafari AM, Golmakani A, Jafari AM. Physicochemical characterization and cytotoxicity assessment of sodium dodecyl sulfate (SDS) modified chitosan (SDSCS) before and after removal of aflatoxins (AFs) as a potential mycotoxin Binder. Toxicol Rep 2024; 13:101836. [PMID: 39691817 PMCID: PMC11650310 DOI: 10.1016/j.toxrep.2024.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Aflatoxins in food and feed with prominent toxic effects have jeopardized public health for decades. This investigation intends to explore synthesized SDS-modified chitosan as new generation of binder for removal of aflatoxin using a straightforward ionic cross-linking approach. The primary objective of this technique was to enhance affinity and adsorption capability of SDSCS towards aflatoxins. In this context, physicochemical properties of SDSCS characterized with advanced analytical techniques such as scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) before and after removal of aflatoxin. In this study, effect of the pH on the adsorption of aflatoxins (6ppb) indicated that the increase in SDSCS concentration from low (0.5) to high (2 %) resulted in an increase of about 80 %, 78 % and 81 % in the adsorption percentage of AFB1, AFG1, and AFB2 & AFG2, respectively. FT-IR analysis showed the intramolecular interactions of the amine groups of chitosan and sulfate group of SDS formed a stable complex in the removal of aflatoxin that verified with appearance of three new additional peaks at 1323.50, 984.34 and 603.42 cm-1. Notably, SEM images revealed that the porous SDSCS network was filled with aflatoxin molecules supported with EDS findings. Also, in vitro cytotoxicity assessments demonstrated that SDSCS protected HepG2 cells against cytotoxic effect caused by aflatoxin (5 µM) in a concentration-dependent manner compared to the control (p<0.01). Collectively, the adsorption mechanism may involve attraction of anionic aflatoxin molecule into the interconnected pores of SDSCS complex with numerous cationic active site via hydrogen bond and van der waals force.
Collapse
Affiliation(s)
| | - Asma Golmakani
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Basic Sciences, Faculty of Veterinary Medicine , Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Qiu Y, Yan J, Yue A, Lu Z, Tan J, Guo H, Ding Y, Lyu F, Fu Y. A comprehensive review of biodetoxification of trichothecenes: Mechanisms, limitations and novel strategies. Food Res Int 2024; 184:114275. [PMID: 38609252 DOI: 10.1016/j.foodres.2024.114275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Trichothecenes are Fusarium mycotoxins with sesquiterpenoid structure, which are widely occurred in grains. Due to high efficiency and environmental friendliness, biological detoxification methods have been of great interest to treat this global food and feed safety concern. This review summarized the biological detoxification methods of trichothecenes from three aspects, biosorption, biotransformation and biotherapy. The detoxification efficiency, characteristics, mechanisms and limitations of different strategies were discussed in detail. Computer-aided design will bring a new research paradigm for more efficient discovery of biodetoxifier. Integrating different detoxification approaches assisted with computational tools will become a promising research direction in the future, which will help to maximize the detoxification effect, or provide precise detoxification programs for the coexistence of various toxins at different levels in actual production. In addition, technical and regulatory issues in practical application were also discussed. These findings contribute to the exploration of efficient, applicable and sustainable methods for trichothecenes detoxification, ensuring the safety of food and feed to reduce the deleterious effects of trichothecenes on humans and animals.
Collapse
Affiliation(s)
- Yue Qiu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Jiaping Yan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aodong Yue
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianzhuang Tan
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fei Lyu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yan Fu
- Tech Bank Food Co Ltd, Yuyao City, Zhejiang 315400, China
| |
Collapse
|
3
|
Zhang C, Zhou H, Cao S, Chen J, Qu C, Tang Y, Wang M, Zhu L, Liu X, Zhang J. A Magnetic Reduced Graphene Oxide Nanocomposite: Synthesis, Characterization, and Application for High-Efficiency Detoxification of Aflatoxin B 1. Toxins (Basel) 2024; 16:57. [PMID: 38276533 PMCID: PMC10818925 DOI: 10.3390/toxins16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Safety problems associated with aflatoxin B1 (AFB1) contamination have always been a major threat to human health. Removing AFB1 through adsorption is considered an attractive remediation technique. (2) Methods: To produce an adsorbent with a high AFB1 adsorption efficiency, a magnetic reduced graphene oxide composite (Fe3O4@rGO) was synthesized using one-step hydrothermal fabrication. Then, the adsorbent was characterized using a series of techniques, such as SEM, TEM, XRD, FT-IR, VSM, and nitrogen adsorption-desorption analysis. Finally, the effects of this nanocomposite on the nutritional components of treated foods, such as vegetable oil and peanut milk, were also examined. (3) Results: The optimal synthesis conditions for Fe3O4@rGO were determined to be 200 °C for 6 h. The synthesis temperature significantly affected the adsorption properties of the prepared material due to its effect on the layered structure of graphene and the loading of Fe3O4 nanoparticles. The results of various characterizations illustrated that the surface of Fe3O4@rGO had a two-dimensional layered nanostructure with many folds and that Fe3O4 nanoparticles were distributed uniformly on the surface of the composite material. Moreover, the results of isotherm, kinetic, and thermodynamic analyses indicated that the adsorption of AFB1 by Fe3O4@rGO conformed to the Langmuir model, with a maximum adsorption capacity of 82.64 mg·g-1; the rapid and efficient adsorption of AFB1 occurred mainly through chemical adsorption via a spontaneous endothermic process. When applied to treat vegetable oil and peanut milk, the prepared material minimized the loss of nutrients and thus preserved food quality. (4) Conclusions: The above findings reveal a promising adsorbent, Fe3O4@rGO, with favorable properties for AFB1 adsorption and potential for food safety applications.
Collapse
Affiliation(s)
- Chushu Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Haixiang Zhou
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Shining Cao
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Jing Chen
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Chunjuan Qu
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Yueyi Tang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Mian Wang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Lifei Zhu
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| | - Xiaoyue Liu
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 125105, China;
| | - Jiancheng Zhang
- Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding (Ministry of Agriculture and Rural Affairs), Qingdao 266100, China; (C.Z.); (H.Z.); (S.C.); (J.C.); (C.Q.); (Y.T.); (M.W.); (L.Z.)
| |
Collapse
|
4
|
Thirugnanasambandan T, Gopinath SCB. Nanomaterials in food industry for the protection from mycotoxins: an update. 3 Biotech 2023; 13:64. [PMID: 36718411 PMCID: PMC9883371 DOI: 10.1007/s13205-023-03478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
The storage of food grains against the fungal infection has been a great challenge to the farmers, but nanotechnology provides a solution to address this problem. The application of nanotechnology for the storage of food grains replaces synthetic fungicides in agriculture. Inorganic nanoparticles such as silver and zinc oxide are well-known for their antifungal activity. Green synthesized nanoparticles show enhanced antimicrobial activity than the chemically synthesized nanoparticles. Extracts and essential oils derived from plants exhibit very good antifungal properties. The synthesized nanoparticles can be impregnated in packaging materials, which are used to store food grains. Natural materials are having advantages like non-toxicity and easier to degrade and are suitable for food safety. This overview discusses the nanomaterials-mediated protection of food materials from mycotoxin and its releases into the open environment.
Collapse
Affiliation(s)
- Theivasanthi Thirugnanasambandan
- International Research Centre, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil, 626126 Tamilnadu India
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau, 02600 Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, 01000 Perlis Malaysia
| |
Collapse
|
5
|
Song C, Qin J. High‐Performance
Fabricated Nano‐adsorbents as Emerging Approach for Removal of Mycotoxins: A Review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenggang Song
- College of Plant Science Jilin University Changchun 130062 P. R. China
| | - Jianchun Qin
- College of Plant Science Jilin University Changchun 130062 P. R. China
| |
Collapse
|
6
|
Wang L, Hua X, Shi J, Jing N, Ji T, Lv B, Liu L, Chen Y. Ochratoxin A: Occurrence and recent advances in detoxification. Toxicon 2022; 210:11-18. [PMID: 35181402 DOI: 10.1016/j.toxicon.2022.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 12/26/2022]
Abstract
Ochratoxin A (OTA), one of the most important mycotoxins, is mainly produced by fungi in the genera Aspergillus and Penicillium, and commonly found in food and agricultural products. In addition to causing significant economic losses, the occurrence of OTA in foods poses a serious threat to human health. Therefore, it is very important to develop approaches to control or detoxify OTA contamination and thus ensure food safety. In this paper, we review the source and occurrence of OTA in food and agricultural products and the latest achievements in the removal and detoxification of OTA using physical, chemical, and biological methods, with specific attention to influencing factors and mechanisms related to the biodetoxification of OTA. Moreover, the advantages and disadvantages of these methods and their potential application prospect were also discussed.
Collapse
Affiliation(s)
- Lan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Xia Hua
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Jie Shi
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ninghao Jing
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ting Ji
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Bing Lv
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yun Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Liu M, Liu Q, Zang Z, Han R. Adsorptive removal of sulfosalicylic acid from aqueous medium by iron(III)-loaded magnetic chitosan/graphene oxide. J Colloid Interface Sci 2022; 606:1249-1260. [PMID: 34492463 DOI: 10.1016/j.jcis.2021.08.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/07/2023]
Abstract
In this study, an iron(III)-loaded magnetic chitosan/graphene oxide composite (Fe-MCG) was synthesized and applied for the adsorptive removal of sulfosalicylic acid (SSA) in aqueous solution. The results obtained from the application of various characterization techniques such as scanning electron microscopy (SEM), vibrating-sample magnetometry (VSM), and X-ray photoelectron spectroscopy (XPS) prove the successful formation of the composite with enhanced microstructure and superparamagnetic properties. The adsorption capacity of Fe-MCG towards SSA via batch mode reaches up to 135 mg/g at 293 K. The adsorption of SSA onto Fe-MCG is driven by monolayer adsorption with the chemical and physical adsorption processes both playing active roles. The Langmuir isotherm and pseudo-second-order kinetic models were observed to best describe the equilibrium adsorption and kinetic processes, respectively. The values obtained for the associated thermodynamic parameters confirm that the adsorptive process is spontaneous, exothermic and entropy-increasing. The efficacy and reusability of the spent Fe-MCG was studied using 0.01 mol/L NaOH solution. The kinetic process for the desorption of SSA from Fe-MCG is well described by the pseudo-second-order kinetic model. Based on the experimental results and XPS analysis, the underlying mechanisms for the uptake of SSA onto Fe-MCG involve electrostatic forces, complexation, π-π stacking, and hydrogen bonding. Overall, the excellent features of Fe-MCG enhance its potential as an adsorbent for the sequestration of SSA in environmental media.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Qiong Liu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, No 90 of Wangcheng Road, Luoyang 471000, PR China.
| | - Zhongyang Zang
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| | - Runping Han
- College of Chemistry, Green Catalysis Center, Zhengzhou University, No 100 of Kexue Road, Zhengzhou 450001, PR China.
| |
Collapse
|
8
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
9
|
Effective Detoxification of Aflatoxin B1 and Ochratoxin A Using Magnetic Graphene Oxide Nanocomposite: Isotherm and Kinetic Study. COATINGS 2021. [DOI: 10.3390/coatings11111346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of the approaches for reducing exposure to mycotoxins is to lessen their bioavailability by applying nanocomposite adsorbents. Magnetic graphene oxide (MGO) is a new class of nanostructured multifunctional nanocomposite materials, which play a vital role as an adsorbent. The primary aim of this study is to apply response surface methodology (RSM) to optimize the influence of pH within the range of 3 to 7, time (3–7 h), and temperature (30–50 °C), on the simultaneous detoxification of aflatoxin B1 (AFB1) and ochratoxin A (OTA) by using MGO. The optimal condition was obtained at pH 5, 5 h, and 40 °C. Further investigation of the adsorption evaluation was carried out by studying different parameters, such as the influence of contact time, initial mycotoxins concentration, and temperature. According to the experimental data, it can be concluded that the pseudo-second-order kinetic model and the Freundlich isotherm fitted well. The capability of adsorption for the Freundlich model was calculated as 153 and 95 ng/g for AFB1 and OTA, respectively. The thermodynamic study showed that the sorption studies act spontaneously as an exothermic process. These findings suggest that the application of MGO as a nanocomposite is of great significance for the detoxification of mycotoxins.
Collapse
|
10
|
Enhanced fluoride adsorption from aqueous solution by zirconium (IV)-impregnated magnetic chitosan graphene oxide. Int J Biol Macromol 2021; 182:1759-1768. [PMID: 34048839 DOI: 10.1016/j.ijbiomac.2021.05.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 01/18/2023]
Abstract
In this study, zirconium (IV)-impregnated magnetic chitosan graphene oxide (Zr-MCGO) was synthesized for removing fluoride from aqueous solution in batch mode. Characterization approaches (pHpzc, FTIR, SEM, XRD, VSM, Raman, BET, and XPS) proved the successful incorporation of Zr into the adsorbent. Zr-MCGO exhibited a relatively favorable and stable capacity of defluoridation at lower pH with a wide range of pH from 4.0 to 8.0, while there was slightly negative effect of ionic strength on adsorption. In addition, Elovich kinetic model and Koble-Corrigan isotherm model could describe the uptake of fluoride well. The adsorption capacity was 8.84 mg/g at 313 K and Zr-MCGO was easily separated from mixtures using external magnet. Based on the experiments and XPS, electrostatic force, ligand exchange, and Lewis acid-base interaction might be potential adsorption mechanisms. Pseudo-second-order model was more compatible with the desorption process by 0.01 mol/L NaHCO3 solution. Therefore, Zr-MCGO was a promising candidate for defluoridation on wastewater pollution remediation.
Collapse
|
11
|
Critical Assessment of Mycotoxins in Beverages and Their Control Measures. Toxins (Basel) 2021; 13:toxins13050323. [PMID: 33946240 PMCID: PMC8145492 DOI: 10.3390/toxins13050323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that contaminate food products such as fruits, vegetables, cereals, beverages, and other agricultural commodities. Their occurrence in the food chain, especially in beverages, can pose a serious risk to human health, due to their toxicity, even at low concentrations. Mycotoxins, such as aflatoxins (AFs), ochratoxin A (OTA), patulin (PAT), fumonisins (FBs), trichothecenes (TCs), zearalenone (ZEN), and the alternaria toxins including alternariol, altenuene, and alternariol methyl ether have largely been identified in fruits and their derived products, such as beverages and drinks. The presence of mycotoxins in beverages is of high concern in some cases due to their levels being higher than the limits set by regulations. This review aims to summarize the toxicity of the major mycotoxins that occur in beverages, the methods available for their detection and quantification, and the strategies for their control. In addition, some novel techniques for controlling mycotoxins in the postharvest stage are highlighted.
Collapse
|
12
|
|
13
|
An ultrasensitive, homogeneous fluorescence quenching immunoassay integrating separation and detection of aflatoxin M 1 based on magnetic graphene composites. Mikrochim Acta 2021; 188:59. [PMID: 33507410 DOI: 10.1007/s00604-021-04715-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/17/2021] [Indexed: 01/24/2023]
Abstract
A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L-1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.
Collapse
|
14
|
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products' Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins (Basel) 2020; 13:2. [PMID: 33374968 PMCID: PMC7822050 DOI: 10.3390/toxins13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.
Collapse
Affiliation(s)
- Laurentiu Mihai Palade
- National Research Development Institute for Animal Biology and Nutrition, 077015 IBNA Balotesti, Romania; (M.I.D.); (D.E.M.); (M.C.R.); (I.T.)
| | | | | | | | | |
Collapse
|
15
|
Horky P, Venusova E, Aulichova T, Ridoskova A, Skladanka J, Skalickova S. Usability of graphene oxide as a mycotoxin binder: In vitro study. PLoS One 2020; 15:e0239479. [PMID: 32966310 PMCID: PMC7510967 DOI: 10.1371/journal.pone.0239479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Mycotoxin management in agriculture is an essential challenge for maintaining the health of both animals and humans. Choosing the right adsorbent is still a question for many breeders and an important criterion for feed manufacturers. New adsorbents are still being sought. Graphene oxide is a promising material in the field of nanotechnology, which excels in its adsorption properties. Presented in vitro study investigates graphene oxide for the binding of mycotoxins from crushed wheat. The results show that graphene oxide has an adsorption capacity for aflatoxin 0.045 mg/g, zearalenone 0.53 mg/g and deoxynivalenol 1.69 mg/g at 37° C. In vitro simulation of crushed wheat digestion showed rapid adsorption during the gastric phase. Of the minerals, Mg, Cu and Zn were the most adsorbed. The applied dose of graphene oxide of 10 mg/g caused only a slight inhibition of the digestive enzymes α-amylase and trypsin compared to pepsin and gastric lipase. In vitro results indicated the suitability of graphene oxide in the adsorption of the aflatoxin, zearalenone and deoxynivalenol.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Eva Venusova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Tereza Aulichova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
16
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
17
|
Razavi N, Es'haghi Z. Curcumin loaded magnetic graphene oxide solid-phase extraction for the determination of parabens in toothpaste and mouthwash coupled with high performance liquid chromatography. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
González-Jartín JM, de Castro Alves L, Alfonso A, Piñeiro Y, Vilar SY, Gomez MG, Osorio ZV, Sainz MJ, Vieytes MR, Rivas J, Botana LM. Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chem 2019; 294:60-66. [PMID: 31126505 DOI: 10.1016/j.foodchem.2019.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 01/01/2023]
Abstract
Mycotoxins are toxic compounds that can be present in feed, food and beverages. In this work, 25 magnetic nanostructured materials were developed to remove the main types of mycotoxins from liquid food matrices. The efficiency for binding mycotoxins from contaminated aqueous solutions was studied. Nanocomposites (diameters lower to 15 μm) composed of mixtures of activated carbon, bentonite and aluminium oxide were able to eliminate up to 87% of mycotoxins with an adsorption efficiency of 450 µg/g. On the other hand, spheres with sizes below 3 mm and composed by biopolymers and activated carbon or graphene oxide removed up to 70% of mycotoxins (adsorption of 598 ng/g). These particles were tested for beer detoxification, and spheres composed of alginate and activated carbon or pectin maintain the ability to eliminate toxins from this beverage. Hence, this technology could be a useful tool for the food industry.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Lisandra de Castro Alves
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Y Piñeiro
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Susana Yáñez Vilar
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Manuel González Gomez
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Zulema Vargas Osorio
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - María J Sainz
- Departamento de Producción Vegetal y Proyectos de Ingeniería, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - J Rivas
- Departamento de Física Aplicada, Universidad de Santiago de Compostela, Facultad de Física, 15782 Santiago de Compostela, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|