1
|
Gawankar S, Masten SJ, Lahr RH. Review of the occurrence, treatment technologies, and detection methods for saxitoxins in freshwaters. JOURNAL OF WATER AND HEALTH 2024; 22:1472-1490. [PMID: 39212282 DOI: 10.2166/wh.2024.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The increasing occurrence of saxitoxins in freshwaters is becoming a concern for water treatment facilities owing to its structural properties which make it resistant to oxidation at pH < 8. Hence, it is crucial to be able to monitor these toxins in surface and drinking water to protect public health. This review aims to outline the current state of knowledge related to the occurrence of saxitoxins in freshwaters and its removal strategies and provide a critical assessment of the detection methods to provide a basis for further development. Temperature and nutrient content are some of the factors that influence the production of saxitoxins in surface waters. A high dose of sodium hypochlorite with sufficient contact time or activated carbon has been shown to efficiently remove extracellular saxitoxins to meet the drinking water guidelines. While HILIC-MS has proven to be a powerful technology for more sensitive and reliable detection of saxitoxin and variants after solid phase extraction, ELISA is cost-effective and easy to use and is used by Ohio EPA for surveillance with a limit of detection of 0.015 μg/L. However, there is a need for the development of cost-effective and sensitive techniques that can quantify the variants of saxitoxin.
Collapse
Affiliation(s)
- Shardula Gawankar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA E-mail:
| | - Susan J Masten
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Rebecca H Lahr
- The City of Ann Arbor, Department of Water Treatment, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Carnicero B, Fuentes R, Sanhueza N, Mattos H, Aguirre-Campos C, Contreras D, Troncoso E, Henríquez JP, Boltaña S. Sublethal neurotoxicity of saxitoxin in early zebrafish development: Impact on sensorimotor function and neurotransmission systems. Heliyon 2024; 10:e27874. [PMID: 38545180 PMCID: PMC10966597 DOI: 10.1016/j.heliyon.2024.e27874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 05/03/2024] Open
Abstract
Saxitoxin (STX) represents a marine toxin of significant concern due to its deleterious implications for aquatic ecosystems and public food safety. As a potent paralytic agent, the role of STX in obstructing voltage-gated sodium channels (VGSCs) is well-characterized. Yet, the mechanistic details underlying its low-dose toxicity remain largely enigmatic. In the current study, zebrafish embryos and larvae were subjected to subchronic exposure of graded STX concentrations (0, 1, 10, and 100 μg/L) until the 7th day post-fertilization. A tactile stimulus-based assay was employed to evaluate potential behavioral perturbations resulting from STX exposure. Both behavioral and transcription level analyses unveiled a compromised tactile response, which was found to be associated with a notable upregulation in the mRNA of two distinct VGSC isoforms, specifically the scn8aa/ab and scn1Laa/ab transcripts, even at the minimal STX dose. Notably, exposure to this lowest STX concentration also resulted in alterations in the transcriptional patterns of pivotal genes for cholinergic and GABAergic pathways, including ache and gabra1. Furthermore, STX induced a marked decrease in the levels of the neurotransmitter GABA. Our findings underscore that prolonged low-dose STX exposure during early development can significantly compromise the tactile response behavior in zebrafish. This study reveals that chronic low-dose STX exposure of developing zebrafish alters neurotransmission pathways that converge on altered tactile behavior.
Collapse
Affiliation(s)
- Beatriz Carnicero
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Oceanografía, Centro de Biotecnología, ThermoFish Lab, Universidad de Concepción, 4030000, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Nataly Sanhueza
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Oceanografía, Centro de Biotecnología, ThermoFish Lab, Universidad de Concepción, 4030000, Concepción, Chile
| | - Humberto Mattos
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Oceanografía, Centro de Biotecnología, ThermoFish Lab, Universidad de Concepción, 4030000, Concepción, Chile
| | - Constanza Aguirre-Campos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - David Contreras
- Biotechnology Center, Renewable Resources Laboratory, Universidad de Concepción, Concepción, 4030000, Chile
| | - Eduardo Troncoso
- Biotechnology Center, Renewable Resources Laboratory, Universidad de Concepción, Concepción, 4030000, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Boltaña
- Facultad de Ciencias Naturales y Oceanográficas, Departamento de Oceanografía, Centro de Biotecnología, ThermoFish Lab, Universidad de Concepción, 4030000, Concepción, Chile
| |
Collapse
|
3
|
Melnikova AA, Komova AV, Namsaraev ZB. Trends and Driving Forces of Cyanobacterial Blooms in Russia in the 20th and Early 21st Centuries. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Passos LS, de Almeida ÉC, Villela A, Fernandes AN, Marinho MM, Gomes LC, Pinto E. Cyanotoxins and water quality parameters as risk assessment indicators for aquatic life in reservoirs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113828. [PMID: 36068755 DOI: 10.1016/j.ecoenv.2022.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
We assessed the extent of pollution in an essential public water supply reservoir (southeastern Brazil). An environmental monitoring study was performed at the Billings Reservoir (at the water catchment site) to assess the water quality in 2017, 2018, and 2019. Physicochemical parameters were analyzed, quantifying the total cyanobacteria and the cyanotoxins microcystins (MCs) and saxitoxins (SXTs), as well as their possible ecological risk to the aquatic environment. We also determined metals and metalloids (As, Ba, Cd, Pb, Cu, Cr, Fe, Mn, Ni, Zn, and Sb) and fecal bacteria (Escherichia coli). Monthly samplings were performed for 2017, 2018, and 2019 (totaling 36 sampling campaigns). Metals, metalloids, and E. coli values were below the maximum limit allowed by the Brazilian legislation. High concentrations of total cyanobacteria (3.07 × 104 - 3.23 × 105 cells/mL), microcystin variants MC-LR (0.67-23.63 μg/L), MC-LA (0.03-8.66 μg/L), MC-RR (0.56-7.92 μg/L), and MC-YR (0.04-1.24 μg/L), as well as the saxitoxins GTX2 (0.18-5.37 μg/L), GTX3 (0.13-4.40 μg/L), and STX (0.12-2.92 μg/L) were detected. From an ecotoxicological point of view, the estimated values for the risk quotient (RQ) for microcystins and saxitoxins were largely greater than 1, indicating a high risk to aquatic life. Therefore, further efforts need to be made to delay the eutrophication of the reservoir.
Collapse
Affiliation(s)
- Larissa Souza Passos
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil; School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 05508-000 São Paulo, Brazil.
| | - Éryka Costa de Almeida
- School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 05508-000 São Paulo, Brazil
| | - Alexandre Villela
- Laboratory of Ictiology of Altamira, Federal University of Pará, Rua Cel. José Porfírio, 68378-000 Altamira, Brazil
| | - Adilson Nunes Fernandes
- Departamento de Recursos Hídricos Metropolitanos (MAR), Companhia de Saneamento Básico do Estado de São Paulo (SABESP), Rua Costa Carvalho, 05429-900 São Paulo, Brazil
| | - Marcelo Manzi Marinho
- Department of Plant Biology, State University of Rio de Janeiro, Rua São Francisco Xavier, 20550-900 Rio de Janeiro, Brazil
| | - Levy Carvalho Gomes
- Laboratory of Applied Ichthyology, Vila Velha University, Rua José Dantas de Melo, 29102-770 Vila Velha, Brazil
| | - Ernani Pinto
- Center for Nuclear Energy in Agriculture, University of São Paulo, Av. Centenário, 13416-000 Piracicaba, Brazil; School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 05508-000 São Paulo, Brazil; Food Research Center (FoRC-CEPID), University of São Paulo, Rua do Lago, 05508-080 São Paulo, Brazil
| |
Collapse
|
5
|
Li J, Persson KM. Quick detection method for paralytic shellfish toxins (PSTs) monitoring in freshwater - A review. CHEMOSPHERE 2021; 265:128591. [PMID: 33189391 DOI: 10.1016/j.chemosphere.2020.128591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The objective of this critical review was to provide a comprehensive summary of paralytic shellfish toxins (PSTs) producing species and knowledge gaps in detecting PSTs in drinking water resources, with a focus on recent development of PSTs monitoring methods and tools for drinking water monitoring. PSTs, which are also called Saxitoxins (STXs), are a group of neurotoxins not only produced by marine dinoflagellates but also freshwater cyanobacteria. The presence of PSTs in freshwater has been reported from all continents except Antarctica. PSTs in poisoned sea food such as shellfish, molluscs and crustaceans may attack the nerve system after consumption. The high incidences of PSTs occurring in drinking water sources showed another route of potential human exposure. A development of simple and fast screening tools for drinking water surveillance of PSTs is needed. Neurotoxins produced by freshwater cyanobacteria are understudied relative to microcystin and little study is done around PSTs in drinking water monitoring. Some fast screening methods exist. The critical issues for using them in water surveillance, particularly matrix effect and cross-reactivity are summarized, and future research directions are high-lighted. We conclude that monitoring routines at drinking water resources should start from species level, followed by a profound screening of toxin profile. For practical monitoring routine, fast screening methods should be combined with highly sensitive and accurate analytical methods such as liquid chromatography/liquid chromatography-mass spectrometry (LC/LC-MS). A thorough understanding of toxin profile in source water is necessary for screening tool selection.
Collapse
Affiliation(s)
- Jing Li
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden.
| | - Kenneth M Persson
- Division of Water Resources Engineering, Faculty of Engineering LTH, Lund University, P.O. Box 118, SE-221 00, Lund, Sweden
| |
Collapse
|
6
|
De Bock MFS, Moraes GSDO, Almeida RGDS, Vieira KDDS, Santoro KR, Bicudo ÁJDA, Molica RJR. Exposure of Nile Tilapia (Oreochromis niloticus) Fingerlings to a Saxitoxin-Producing Strain of Raphidiopsis (Cylindrospermopsis) raciborskii (Cyanobacterium) Reduces Growth Performance and Increases Mortality Rate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1409-1420. [PMID: 32323358 DOI: 10.1002/etc.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/04/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Blooms of toxin-producing cyanobacteria have been more frequent and lasting because of the eutrophication of freshwater ecosystems, including those used for aquaculture. The aim of the present study was to investigate the effects of chronic exposure to a saxitoxin-producing strain of Raphidiopsis (Cylindrospermopsis) raciborskii on the performance of Nile tilapia (Oreochromis niloticus) fingerlings over a 60-d period. The fingerlings were cultivated under the following conditions: 1) water without cyanobacterium (WATER), 2) R. raciborskii in ASM-1 culture medium (CYANO), and 3) ASM-1 culture medium without cyanobacterium (ASM). Exposure to the CYANO treatment led to a significant increase in the mortality rate (p < 0.05) and a significant reduction in growth (p < 0.05) compared to fingerlings submitted to the ASM and WATER treatments, in which similar survival and growth were found (p > 0.05). Saxitoxin toxicity was dependent on the weight of the fingerling (p < 0.05), with maximum mortality caused by the ingestion of 13.66 μg saxitoxin equivalent L-1 g-1 . The present results clearly show the harm caused by saxitoxins to the production of Nile tilapia fingerlings in the early growth phase. These findings underscore the importance of maintaining adequate water quality in aquaculture activities to minimize the risk of saxitoxin-producing cyanobacterial blooms and avoid economic losses among producers. Environ Toxicol Chem 2020;39:1409-1420. © 2020 SETAC.
Collapse
Affiliation(s)
| | | | | | | | - Kleber Régis Santoro
- Garanhuns Academic Unit, Rural Federal University of Pernambuco, Garanhuns, Pernambuco, Brazil
- Graduate Program in Biometrics and Applied Statistics, Rural Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Renato José Reis Molica
- Garanhuns Academic Unit, Rural Federal University of Pernambuco, Garanhuns, Pernambuco, Brazil
| |
Collapse
|
7
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
8
|
Faria M, Wu X, Luja-Mondragón M, Prats E, Gómez-Oliván LM, Piña B, Raldúa D. Screening anti-predator behaviour in fish larvae exposed to environmental pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136759. [PMID: 31986390 DOI: 10.1016/j.scitotenv.2020.136759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Predation is one of the main sources of mortality for fish larvae. During evolution, they have developed different anti-predator behaviours, as the vibrational-evoked startle response and its habituation, for promoting survival to predator's strikes. Whereas these two behaviours can be altered by the exposure to some neurotoxicants, it is currently unknown if the exposure to environmentally relevant concentration (ERC) of neurotoxic pollutants could impair them. In this study thirty neurotoxic environmental pollutants from nine chemical groups, including: herbicides; carbamate, organophosphate (OP), organochlorine (OC), neonicotinoid and pyrethroid insecticides; toxins; metal and non-metal elements, have been screened at two concentrations, including one environmental relevant concentration (ERC), for adverse effects on anti-predator behaviours by using the Vibrational Startle Response Assay on zebrafish larvae. Significant effects over anti-predator responses were equally observed in both exposure concentrations. Focusing on the ERC scenario, it was found that the startle response was the less affected behaviour, where ten pollutants from all chemical groups except for organochlorine, neonicotinoid and pyrethroids, altered this response. Interestingly, organic and inorganic pollutants showed opposite effects on this response: whereas all organic pollutants decreased the startle response, the three remaining inorganic pollutants increased it. On the other hand, more pollutants affected habituation of the startle response of the larvae, where thirteen of the pollutants from all groups, except for herbicides, altered this behaviour at ERC, generally resulting in a faster habituation except for one OP and one marine toxin, which were able to delay this response. Ultimately, only one chemical from the OP, toxin, metal and non-metal element groups altered both the startle response and its habituation at both ERC and WSC. These results emphasize the environmental risk of the current levels of some neurotoxicants present in our aquatic ecosystems, as they are high enough to impair essential anti-predator behaviours in fish larvae.
Collapse
Affiliation(s)
- Melissa Faria
- IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain.
| | - Xiaona Wu
- IDAEA-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Marlenne Luja-Mondragón
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | | | | |
Collapse
|
9
|
Abstract
Eutrophication caused by the entry of nutrients into a water body may lead to algal bloom. Russia possesses the world’s second highest supply of renewable freshwater resources and has faced the problem of eutrophication for many years. Nevertheless, as far as we know, no general analysis of Russia’s algal bloom situation has been before carried out. We have analyzed mass media and scientific reports about algal outbreaks from 2016 to 2018, which allowed us to determine the geographical distribution of algal blooms in Russia, as well as the major effects of eutrophication. As a result, we showed that algal blooms happened in all major climate zones and all federal districts. Cyanobacteria are the most frequently reported photosynthetic organisms comprising algal blooms in freshwater reservoirs located in the continental part of Russia and in the Baltic Sea. Dinoflagellate dominated blooms are more characteristic for the coastal parts of the northeastern Pacific Ocean. The largest number of reports comes from the south of the European part of Russia. However, we did not find significant correlations between state statistics data on factors possibly affecting eutrophication (e.g., population, arable land area, fertilizers, livestock, air temperature, etc.) and the number of algal outbreaks in the regions. Mass media analysis showed that algal blooms attract considerable public attention in Russia, which requires the scientific community to actively participate in solving the problem.
Collapse
|
10
|
Olano DEB, Salvador-Reyes LA, Montaño MNE, Azanza RV. Sorption of paralytic shellfish toxins (PSTs) in algal polysaccharide gels. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Fedorova GA, Kuzmin AV, Zubkov IN, Tikhonova IV, Shtykova IR, Butina TV, Belykh OI, Grachev MA. Определение сакситоксина в воде озера Байкал. ACTA BIOLOGICA SIBIRICA 2019. [DOI: 10.14258/abs.v5.i1.5195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Выполнено определение сакситоксина в пробах поверхностной воды, отобранной летом 2018 года в период массового цветения цианобактерий в прибрежной зоне заливов Ая, Тутай (западное побережье Байкала), Мухор (пролив Малое Море), Посольский сор и около села Турка (восточное побережье Байкала). Для определения сакситоксина использована методика определения, основанная на химической модификации сакситоксина 2,4-динитрофенилгидразином с последующей идентификацией гидразона сакситоксина методом жидкостной хроматографии с масс-спектрометрическим детектированием. Для проб с ожидаемой низкой концентрацией сакситоксина предложен усовершенствованный вариант методики. Показано, что содержание сакситоксина в воде во всех исследованных пробах ниже рекомендованной для питьевой воды (< 3 мкг/л).
Collapse
|