1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Rajendiran P, Naidu R, Othman I, Zainal Abidin SA. Identification of antigenic proteins from the venom of Malaysian snakes using immunoprecipitation assay and tandem mass spectrometry (LC-MS/MS). Heliyon 2024; 10:e37243. [PMID: 39286227 PMCID: PMC11403504 DOI: 10.1016/j.heliyon.2024.e37243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Snake envenomation poses a significant risk to Malaysians and country visitors. Malaysia witnesses an estimated 650 snake bites per 100,000 population annually. The primary treatment for snake envenomation involves administering antivenom derived from horses, despite its drawbacks, such as anaphylactic reactions and serum sickness. Identifying the venom proteome is crucial for understanding and predicting the clinical implications of envenomation and developing effective treatments targeting specific venom proteins. In this study, we employ an immunoprecipitation assay followed by LC-MS/MS to identify antigenic proteins in five common venomous snakes in Malaysia compassing of two families which are pit vipers, (Calloselasma rhodostoma and Cryptelytrops purpureomaculatus) and cobras (Ophiophagus hannah, Naja kaouthia, and Naja sumatrana). The immunoprecipitation assay utilises a 2 % agarose gel, allowing antigenic proteins to diffuse and bind with antibodies in the antivenom. The antivenom utilised in this research was procured from the Queen Saovabha Memorial Institute (QSMI), Thailand, including king cobra antivenom (KCAV), cobra antivenom (CAV), Malayan pit viper antivenom (MPAV), Russell's viper antivenom (RPAV), hematopolyvalent antivenom (HPAV), neuropolyvalent antivenom (NPAV), banded krait antivenom (BKAV), and Malayan krait antivenom (MKAV). The protein identified through these interactions which are exclusive to the cobras are three-finger toxins (3FTXs) while snake C-type lectins (Snaclecs) are unique to the pit vipers. Common protein that are present in both families are L-amino acid oxidase (LAAO), Phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP). Identifying these proteins is vital for formulating a broad-spectrum antivenom applicable across multiple species.
Collapse
Affiliation(s)
- Preetha Rajendiran
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine of Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Proteomics and Metabolomics Platform, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Lino-López GJ, Ruiz-May E, Elizalde-Contreras JM, Jiménez-Vargas JM, Rodríguez-Vázquez A, González-Carrillo G, Bojórquez-Velázquez E, García-Villalvazo PE, Bermúdez-Guzmán MDJ, Zatarain-Palacios R, Vázquez-Vuelvas OF, Valdez-Velázquez LL, Corzo G. Proteomic Analysis of Heloderma horridum horridum Venom: Assessment to Its Transcriptome and Newfound Proteins. J Proteome Res 2024; 23:3638-3648. [PMID: 39038168 DOI: 10.1021/acs.jproteome.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.
Collapse
Affiliation(s)
- Gisela J Lino-López
- Facultad de Ciencias Químicas, Universidad de Colima, 28400 Coquimatlan, Colima, México
- Departamento de Control Biológico, CNRF-DGSV-SENASICA-SADER, Km 1.5 Carretera Tecomán-Estación FFCC, Col. Tepeyac, 28110 Tecomán, Colima, México
| | - Eliel Ruiz-May
- Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz,México
| | | | | | - Armando Rodríguez-Vázquez
- Centro de Conservación de Vida Silvestre El Palapo, Parcela No. 75 Z-1 P2/2, Predio Las Cuevas del Ejido Agua Zarca, 28400 Coquimatlan, Colima, México
| | - Gabino González-Carrillo
- Tecnológico Nacional de México/ITJMMPyH, U.A. Tamazula. Carretera Tamazula Santa Rosa No. 329, 49650 Tamazula de Gordiano, Jalisco, México
| | | | | | - Manuel de J Bermúdez-Guzmán
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), 28100 Tecomán, Colima, México
| | | | | | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Lecaudey LA, Netzer R, Wibberg D, Busche T, Bloecher N. Metatranscriptome analysis reveals the putative venom toxin repertoire of the biofouling hydroid Ectopleura larynx. Toxicon 2024; 237:107556. [PMID: 38072317 DOI: 10.1016/j.toxicon.2023.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Cnidarians thriving in biofouling communities on aquaculture net pens represent a significant health risk for farmed finfish due to their stinging cells. The toxins coming into contact with the fish, during net cleaning, can adversely affect their behavior, welfare, and survival, with a particularly serious health risk for the gills, causing direct tissue damage such as formation of thrombi and increasing risks of secondary infections. The hydroid Ectopleura larynx is one of the most common fouling organisms in Northern Europe. However, despite its significant economic, environmental, and operational impact on finfish aquaculture, biological information on this species is scarce and its venom composition has never been investigated. In this study, we generated a whole transcriptome of E. larynx, and identified its putative expressed venom toxin proteins (predicted toxin proteins, not functionally characterized) based on in silico transcriptome annotation mining and protein sequence analysis. The results uncovered a broad and diverse repertoire of putative toxin proteins for this hydroid species. Its toxic arsenal appears to include a wide and complex selection of toxin proteins, covering a large panel of potential biological functions that play important roles in envenomation. The putative toxins identified in this species, such as neurotoxins, GTPase toxins, metalloprotease toxins, ion channel impairing toxins, hemorrhagic toxins, serine protease toxins, phospholipase toxins, pore-forming toxins, and multifunction toxins may cause various major deleterious effects in prey, predators, and competitors. These results provide valuable new insights into the venom composition of cnidarians, and venomous marine organisms in general, and offer new opportunities for further research into novel and valuable bioactive molecules for medicine, agronomics and biotechnology.
Collapse
Affiliation(s)
| | - Roman Netzer
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany; Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Nina Bloecher
- SINTEF Ocean, Aquaculture Department, Brattørkaia 17c, 7010, Trondheim, Norway
| |
Collapse
|
5
|
Hiremath K, Dodakallanavar J, Sampat GH, Patil VS, Harish DR, Chavan R, Hegde HV, Roy S. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers 2023:10.1007/s11030-023-10734-3. [PMID: 37749455 DOI: 10.1007/s11030-023-10734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023]
Abstract
The WHO lists snakebite as a "neglected tropical disease". In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids' Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.
Collapse
Affiliation(s)
- Kashinath Hiremath
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Jagadeesh Dodakallanavar
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India.
| | - Rajashekar Chavan
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, 590010, India.
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, 590010, India
| |
Collapse
|
6
|
Adisakwattana P, Chanhome L, Chaiyabutr N, Phuphisut O, Onrapak R, Thawornkuno C. Venom-gland transcriptomics of the Malayan pit viper ( Calloselasma rhodostoma) for identification, classification, and characterization of venom proteins. Heliyon 2023; 9:e15476. [PMID: 37153433 PMCID: PMC10160700 DOI: 10.1016/j.heliyon.2023.e15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
The Malayan pit viper (Calloselasma rhodostoma) is a hemotoxic snake widely found in Southeast Asia and is responsible for the majority of poisoning cases in this region, including Thailand. However, a comprehensive knowledge of the venom protein profile and classification, as well as novel venom proteins, of this viper is still limited. Recently, the detailed composition of several snake venoms has been discovered through the use of transcriptome analysis. Therefore, the aim of this study was to employ a next-generation sequencing platform and bioinformatics analysis to undertake venom-gland de novo transcriptomics of Malayan pit vipers. Furthermore, 21,272 functional coding genes were identified from 36,577 transcripts, of which 314 transcripts were identified as toxin proteins, accounting for 61.41% of total FPKM, which can be categorized into 22 toxin gene families. The most abundant are snake venom metalloproteinase kistomin (P0CB14) and zinc metalloproteinase/disintegrin (P30403), which account for 60.47% of total toxin FPKM and belong to the SVMP toxin family, followed by snake venom serine protease 1 (O13059) and Snaclec rhodocetin subunit beta (P81398), which account for 6.84% and 5.50% of total toxin FPKM and belong to the snake venom serine protease (SVSP) and Snaclec toxin family, respectively. Amino acid sequences of the aforementioned toxins were compared with those identified in other important medical hemotoxic snakes from Southeast Asia, including the Siamese Russell's viper (Daboia siamensis) and green pit viper (Trimeresurus albolabris), in order to analyze their protein homology. The results demonstrated that ranges of 58%-62%, 31%-60%, and 48%-59% identity was observed among the SVMP, Snaclec, and SVSP toxin families, respectively. Understanding the venom protein profile and classification is essential in interpreting clinical symptoms during human envenomation and developing potential therapeutic applications. Moreover, the variability of toxin families and amino acid sequences among related hemotoxic snakes found in this study suggests the use and development of universal antivenom for the treatment of envenomating patients is still challenging.
Collapse
Affiliation(s)
- Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Lawan Chanhome
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Narongsak Chaiyabutr
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Reamtong Onrapak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Tan CH, Tan KY, Ng TS, Tan NH, Chong HP. De Novo Venom Gland Transcriptome Assembly and Characterization for Calloselasma rhodostoma (Kuhl, 1824), the Malayan Pit Viper from Malaysia: Unravelling Toxin Gene Diversity in a Medically Important Basal Crotaline. Toxins (Basel) 2023; 15:toxins15050315. [PMID: 37235350 DOI: 10.3390/toxins15050315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Southeast Asia, the Malayan Pit Viper (Calloselasma rhodostoma) is a venomous snake species of medical importance and bioprospecting potential. To unveil the diversity of its toxin genes, this study de novo assembled and analyzed the venom gland transcriptome of C. rhodostoma from Malaysia. The expression of toxin genes dominates the gland transcriptome by 53.78% of total transcript abundance (based on overall FPKM, Fragments Per Kilobase Million), in which 92 non-redundant transcripts belonging to 16 toxin families were identified. Snake venom metalloproteinase (SVMP, PI > PII > PIII) is the most dominant family (37.84% of all toxin FPKM), followed by phospholipase A2 (29.02%), bradykinin/angiotensin-converting enzyme inhibitor-C-type natriuretic peptide (16.30%), C-type lectin (CTL, 10.01%), snake venom serine protease (SVSP, 2.81%), L-amino acid oxidase (2.25%), and others (1.78%). The expressions of SVMP, CTL, and SVSP correlate with hemorrhagic, anti-platelet, and coagulopathic effects in envenoming. The SVMP metalloproteinase domains encode hemorrhagins (kistomin and rhodostoxin), while disintegrin (rhodostomin from P-II) acts by inhibiting platelet aggregation. CTL gene homologues uncovered include rhodocytin (platelet aggregators) and rhodocetin (platelet inhibitors), which contribute to thrombocytopenia and platelet dysfunction. The major SVSP is a thrombin-like enzyme (an ancrod homolog) responsible for defibrination in consumptive coagulopathy. The findings provide insight into the venom complexity of C. rhodostoma and the pathophysiology of envenoming.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tzu Shan Ng
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Amorim FG, Silva TA, de Oliveira Almeida G, Redureau D, Cabral H, Quinton L, Sampaio SV. Isolation and characterization of the first phosphodiesterase (Bj-PDE) from the venom of Bothrops jararacussu snake. Int J Biol Macromol 2023; 235:123793. [PMID: 36828087 DOI: 10.1016/j.ijbiomac.2023.123793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Phosphodiesterases are exonucleases that sequentially hydrolyse phosphodiester bonds of polynucleotides from the 3'-end and release 5-mononucleotides. After more than one decade without any advance in the study of Bothropic phosphodiesterases, we described here the isolation of the first phosphodiesterase from Bothrops jararacussu, which we named Bj-PDE. A five-step column chromatography procedure (size exclusion, hydrophobic interaction, cation exchange, lentil lectin affinity, and blue sepharose affinity) enabled isolation of Bj-PDE with preserved and stable enzymatic activity (bis(p-nitrophenyl) phosphate substrate), Km = 6.9 mM (± 0.7 mM), kcat/Km = 1.7 × 104 M-1 s-1 (± 0.2 × 104 M-1 s-1), MW = 116 kDa (SDS-PAGE), optimum activity around 45 °C at pH 8.0, and stability for 81 days at different storage temperatures (8, -20, and - 80 °C). Ca2+ and Mg2+ ions positively influenced Bj-PDE activity, while EDTA had the opposite action. Zn2+ restored >50 % of enzyme activity after its inhibition by EDTA. The Bj-PDE partial sequence identified by mass spectrometry was very similar to the sequence of BATXPDE1 from Bothrops atrox, which was evolutionarily close to this new PDE. Therefore, our study represents an important progress on the isolation of this minor toxin and sheds new lights on the properties and bioprospection of bothropic phosphodiesterases.
Collapse
Affiliation(s)
- Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium.
| | - Thiago Abrahão Silva
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Gabriela de Oliveira Almeida
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| | - Damien Redureau
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium.
| | - Hamilton Cabral
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Loïc Quinton
- Laboratory of Mass Spectrometry, MolSys Research Unit, University of Liège, Liège, Belgium.
| | - Suely Vilela Sampaio
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
9
|
Zukifli NA, Ibrahim Z, Othman I, Ismail AK, Chaisakul J, Hodgson WC, Ahmad Rusmili MR. In Vitro neurotoxicity and myotoxicity of Malaysian Naja sumatrana and Naja kaouthia venoms: Neutralization by monovalent and Neuro Polyvalent Antivenoms from Thailand. PLoS One 2022; 17:e0274488. [PMID: 36094937 PMCID: PMC9467353 DOI: 10.1371/journal.pone.0274488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Naja sumatrana and Naja kaouthia are medically important elapids species found in Southeast Asia. Snake bite envenoming caused by these species may lead to morbidity or mortality if not treated with the appropriate antivenom. In this study, the in vitro neurotoxic and myotoxic effects N. sumatrana and N. kaouthia venoms from Malaysian specimens were assessed and compared. In addition, the neutralizing capability of Cobra Antivenom (CAV), King Cobra Antivenom (KCAV) and Neuro Polyvalent Antivenom (NPAV) from Thailand were compared. Both venoms produced concentration-dependent neurotoxic and myotoxic effects in the chick biventer cervicis nerve-muscle preparation. Based on the time to cause 90% inhibition of twitches (i.e. t90) N. kaouthia venom displayed more potent neurotoxic and myotoxic effects than N. sumatrana venom. All three of the antivenoms significantly attenuated venom-induced twitch reduction of indirectly stimulated tissues when added prior to venom. When added after N. sumatrana venom, at the t90 time point, CAV and NPAV partially restored the twitch height but has no significant effect on the reduction in twitch height caused by N. kaouthia venom. The addition of KCAV, at the t90 time point, did not reverse the attenuation of indirectly stimulated twitches caused by either venom. In addition, none of the antivenoms, when added prior to venom, prevented attenuation of directly stimulated twitches. Differences in the capability of antivenoms, especially NPAV and CAV, to reverse neurotoxicity and myotoxicity indicate that there is a need to isolate and characterize neurotoxins and myotoxins from Malaysian N. kaouthia and N. sumatrana venoms to improve neutralization capability of the antivenoms.
Collapse
Affiliation(s)
- Nor Asyikin Zukifli
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Zalikha Ibrahim
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Muhamad Rusdi Ahmad Rusmili
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, Kuantan Campus, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
- * E-mail:
| |
Collapse
|
10
|
Khimmaktong W, Nuanyaem N, Lorthong N, Hodgson WC, Chaisakul J. Histopathological Changes in the Liver, Heart and Kidneys Following Malayan Pit Viper ( Calloselasma rhodostoma) Envenoming and the Neutralising Effects of Hemato Polyvalent Snake Antivenom. Toxins (Basel) 2022; 14:601. [PMID: 36136539 PMCID: PMC9505761 DOI: 10.3390/toxins14090601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/09/2023] Open
Abstract
Calloselasma rhodostoma (Malayan pit viper) is a medically important snake species that is widely distributed across Southeast Asia. Systemic coagulopathy causing severe haemorrhage and local tissue injury is commonly observed following C. rhodostoma envenoming. However, nephrotoxicity and congestive heart failure were previously reported in a patient who had a long length of hospital stay. In this study, we determined the effect of C. rhodostoma envenoming on cardiovascular disturbances and the associated morphological changes in the liver, heart and kidneys using animal models. We also evaluated the efficacy of Hemato polyvalent antivenom (HPAV; Queen Saovabha Memorial Institute (QSMI) of the Thai Red Cross Society, Thailand) in neutralising the histopathological effects of C. rhodostoma venom. The intravenous (i.v.) administration of C. rhodostoma venom (1000 µg/kg) caused a rapid decrease in mean arterial pressure (MAP) followed by complete cardiac collapse in anaesthetized rats. Moreover, the intraperitoneal (i.p.) administration of C. rhodostoma venom (11.1 mg/kg; 3 × LD50) for 24 h caused cellular lesions in the liver and heart tissues. C. rhodostoma venom also induced nephrotoxicity, as indicated by the presence of tubular injury, interstitial vascular congestion and inflammatory infiltration in the whole area of the kidney. The administration of HPAV, at manufacturer-recommended doses, 15 min prior to or after the addition of C. rhodostoma venom reduced the extent of the morphological changes in the liver, heart and kidneys. This study found that experimental C. rhodostoma envenoming induced cardiovascular disturbances, hepatotoxicity and nephrotoxicity. We also highlighted the potential broad utility of HPAV to neutralise the histopathological effects of C. rhodostoma venom. The early delivery of antivenom appears capable of preventing envenoming outcomes.
Collapse
Affiliation(s)
- Wipapan Khimmaktong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nazmi Nuanyaem
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nissara Lorthong
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
12
|
Anita S, Sadjuri AR, Rahmah L, Nugroho HA, Mulyadi, Trilaksono W, Ridhani W, Safira N, Bahtiar H, Maharani, Hamidy A, Azhari A. Venom composition of Trimeresurus albolabris, T. insularis, T. puniceus and T. purpureomaculatus from Indonesia. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210103. [PMID: 35875602 PMCID: PMC9261747 DOI: 10.1590/1678-9199-jvatitd-2021-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom’s toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.
Collapse
Affiliation(s)
- Syahfitri Anita
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia.,Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | | | | | - Herjuno Ari Nugroho
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN) , Cibinong, Indonesia
| | - Mulyadi
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wahyu Trilaksono
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Wiwit Ridhani
- PT Dermama Bioteknologi Laboratorium, Betshaida Hospital, Tangerang, Indonesia
| | | | | | - Maharani
- PT Bio Farma (Persero), Bandung, Indonesia
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | | |
Collapse
|
13
|
Laugesen SH, Chou DHC, Safavi-Hemami H. Unconventional insulins from predators and pathogens. Nat Chem Biol 2022; 18:688-697. [PMID: 35761080 DOI: 10.1038/s41589-022-01068-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022]
Abstract
Insulin and its related peptides are found throughout the animal kingdom, in which they serve diverse functions. This includes regulation of glucose homeostasis, neuronal development and cognition. The surprising recent discovery that venomous snails evolved specialized insulins to capture fish demonstrated the nefarious use of this hormone in nature. Because of their streamlined role in predation, these repurposed insulins exhibit unique characteristics that have unraveled new aspects of the chemical ecology and structural biology of this important hormone. Recently, insulins were also reported in other venomous predators and pathogenic viruses, demonstrating the broader use of insulin by one organism to manipulate the physiology of another. In this Review, we provide an overview of the discovery and biomedical application of repurposed insulins and other hormones found in nature and highlight several unique insights gained from these unusual compounds.
Collapse
Affiliation(s)
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
do Nascimento SM, de Oliveira UC, Nishiyama-Jr MY, Tashima AK, Silva Junior PID. Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1878226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Soraia Maria do Nascimento
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| | - Ursula Castro de Oliveira
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | - Milton Yutaka Nishiyama-Jr
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
| | | | - Pedro Ismael da Silva Junior
- Laboratory of Applied Toxinology – Center of Toxins, Immune-Response and Cell Signaling (CeTICS/CEPID), Butantan Institute, São Paulo, Brazil
- Postgraduate Program Interunits in Biotechnology, USP/IBu/IPT, São Paulo, Brazil
| |
Collapse
|
15
|
|
16
|
Rao WQ, Kalogeropoulos K, Allentoft ME, Gopalakrishnan S, Zhao WN, Workman CT, Knudsen C, Jiménez-Mena B, Seneci L, Mousavi-Derazmahalleh M, Jenkins TP, Rivera-de-Torre E, Liu SQ, Laustsen AH. The rise of genomics in snake venom research: recent advances and future perspectives. Gigascience 2022; 11:giac024. [PMID: 35365832 PMCID: PMC8975721 DOI: 10.1093/gigascience/giac024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022] Open
Abstract
Snake venoms represent a danger to human health, but also a gold mine of bioactive proteins that can be harnessed for drug discovery purposes. The evolution of snakes and their venom has been studied for decades, particularly via traditional morphological and basic genetic methods alongside venom proteomics. However, while the field of genomics has matured rapidly over the past 2 decades, owing to the development of next-generation sequencing technologies, snake genomics remains in its infancy. Here, we provide an overview of the state of the art in snake genomics and discuss its potential implications for studying venom evolution and toxinology. On the basis of current knowledge, gene duplication and positive selection are key mechanisms in the neofunctionalization of snake venom proteins. This makes snake venoms important evolutionary drivers that explain the remarkable venom diversification and adaptive variation observed in these reptiles. Gene duplication and neofunctionalization have also generated a large number of repeat sequences in snake genomes that pose a significant challenge to DNA sequencing, resulting in the need for substantial computational resources and longer sequencing read length for high-quality genome assembly. Fortunately, owing to constantly improving sequencing technologies and computational tools, we are now able to explore the molecular mechanisms of snake venom evolution in unprecedented detail. Such novel insights have the potential to affect the design and development of antivenoms and possibly other drugs, as well as provide new fundamental knowledge on snake biology and evolution.
Collapse
Affiliation(s)
- Wei-qiao Rao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Konstantinos Kalogeropoulos
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Morten E Allentoft
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Globe Institute, University of Copenhagen, Øster Voldgade 5, 1350, Copenhagen, Denmark
| | - Wei-ning Zhao
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Belén Jiménez-Mena
- DTU Aqua, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Lorenzo Seneci
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Mahsa Mousavi-Derazmahalleh
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent Street, 6102, Bentley Perth, Australia
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| | - Si-qi Liu
- Department of Mass Spectrometry, Beijing Genomics Institute-Research, 518083, Shenzhen, China
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Ha SJ, Choi YO, Kwag EB, Kim SD, Yoo HS, Kang IC, Park SJ. Qualitative Analysis of Proteins in Two Snake Venoms, Gloydius Blomhoffii and Agkistrodon Acutus. J Pharmacopuncture 2022; 25:52-62. [PMID: 35371588 PMCID: PMC8947974 DOI: 10.3831/kpi.2022.25.1.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives Snake venom is a complex mixture of various pharmacologically active substances, such as small proteins, peptides, and organic and mineral components. This paper aims to identify and analyse the proteins in common venomous snakes, such as Gloydius blomhoffii (G. blomhoffii) and Agkistrodon acutus (A. acutus), in Korea. Methods We used mass spectrometry, electrophoresis, N-terminal sequencing and in-gel digestion to analyse the proteins in these two snake venoms. Results We identified eight proteins in G. blomhoffii venom and four proteins in A. acutus venom. The proteins detected in G. blomhoffii and A. acutus venoms were phospholipase A2, snake venom metalloproteinase and cysteine-rich secretory protein. Snake C-type lectin (snaclec) was unique to A. acutus venom. Conclusion These data will contribute to the current knowledge of proteins present in the venoms of viper snakes and provide useful information for investigating their therapeutic potential.
Collapse
Affiliation(s)
- Su-Jeong Ha
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Yeo-Ok Choi
- Bio Research Institute of Biotechnology, Goyang, Republic of Korea
| | - Eun-Bin Kwag
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Dam Kim
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| | - Hwa-seung Yoo
- East West Cancer Center, Seoul Korean Medicine Hospital, Daejeon University, Seoul, Republic of Korea
| | - In-Cheol Kang
- Department of Biological Science and BioChip Research Center, Hoseo University, Asan, Republic of Korea
- InnoPharmaScreen Inc., Incheon, Republic of Korea
| | - So-Jung Park
- East West Cancer Center, Daejeon Korean Medicine Hospital, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Tasoulis T, Pukala TL, Isbister GK. Investigating Toxin Diversity and Abundance in Snake Venom Proteomes. Front Pharmacol 2022; 12:768015. [PMID: 35095489 PMCID: PMC8795951 DOI: 10.3389/fphar.2021.768015] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding snake venom proteomes is becoming increasingly important to understand snake venom biology, evolution and especially clinical effects of venoms and approaches to antivenom development. To explore the current state of snake venom proteomics and transcriptomics we investigated venom proteomic methods, associations between methodological and biological variability and the diversity and abundance of protein families. We reviewed available studies on snake venom proteomes from September 2017 to April 2021. This included 81 studies characterising venom proteomes of 79 snake species, providing data on relative toxin abundance for 70 species and toxin diversity (number of different toxins) for 37 species. Methodologies utilised in these studies were summarised and compared. Several comparative studies showed that preliminary decomplexation of crude venom by chromatography leads to increased protein identification, as does the use of transcriptomics. Combining different methodological strategies in venomic approaches appears to maximize proteome coverage. 48% of studies used the RP-HPLC →1D SDS-PAGE →in-gel trypsin digestion → ESI -LC-MS/MS pathway. Protein quantification by MS1-based spectral intensity was used twice as commonly as MS2-based spectral counting (33–15 studies). Total toxin diversity was 25–225 toxins/species, with a median of 48. The relative mean abundance of the four dominant protein families was for elapids; 3FTx–52%, PLA2–27%, SVMP–2.8%, and SVSP–0.1%, and for vipers: 3FTx–0.5%, PLA2–24%, SVMP–27%, and SVSP–12%. Viper venoms were compositionally more complex than elapid venoms in terms of number of protein families making up most of the venom, in contrast, elapid venoms were made up of fewer, but more toxin diverse, protein families. No relationship was observed between relative toxin diversity and abundance. For equivalent comparisons to be made between studies, there is a need to clarify the differences between methodological approaches and for acceptance of a standardised protein classification, nomenclature and reporting procedure. Correctly measuring and comparing toxin diversity and abundance is essential for understanding biological, clinical and evolutionary implications of snake venom composition.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
| | - Tara L Pukala
- Department of Chemistry, University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Venom proteomic analysis of medically important Nigerian viper Echis ocellatus and Bitis arietans snake species. Biochem Biophys Rep 2021; 28:101164. [PMID: 34765747 PMCID: PMC8571701 DOI: 10.1016/j.bbrep.2021.101164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Snakebite envenoming remains a neglected tropical disease which poses severe health hazard, especially for the rural inhabitants in Africa. In Nigeria, vipers are responsible for the highest number of deaths. Hydrophilic interaction liquid chromatography coupled with LC-MS/MS was used to analyze the crude venoms of Echis ocellatus (Carpet viper) and Bitis arietans (Puff adder) in order to understand their venom proteomic identities. Results obtained revealed that gel-free proteomic analysis of the crude venoms led to the identification of 85 and 79 proteins, respectively. Seventy-eight (78) proteins were common between the two snake species with a 91.8% similarity score. The identified proteins belong to 18 protein families in E. ocellatus and 14 protein families in B. arietans. Serine proteases (22.31%) and metalloproteinases (21.06%) were the dominant proteins in the venom of B. arietans; while metalloproteinases (34.84%), phospholipase A2s (21.19%) and serine proteases (15.50%) represent the major toxins in the E. ocellatus venom. Other protein families such as three-finger toxins and cysteine-rich venom proteins were detected in low proportions. This study provides an insight into the venom proteomic analysis of the two Nigerian viper species, which could be useful in identifying the toxin families to be neutralized in case of envenomation. Venom proteomic of Nigeria's most medically important snakes is presented. SVMP, SVSP and PLA2 were the major toxin families in E. ocellatus and B. arietans. The venom proteomes of these vipers displayed 91.8% similarity in composition.
Collapse
|
20
|
Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, Sallau AB. Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon 2021; 197:24-32. [PMID: 33775665 DOI: 10.1016/j.toxicon.2021.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Proteomics technologies enable a comprehensive study of complex proteins and their functions. The venom proteomes of three medically important Nigerian Elapidae snakes Naja haje, Naja katiensis and Naja nigricollis was studied using HILIC coupled with LC-MS/MS analysis. Results revealed a total of 57, 55, and 46 proteins in the venoms of N. haje, N. katiensis, and N. nigricollis, respectively, with molecular mass ranging between 5 and 185 kDa. These snakes have 38 common proteins in addition to 3 uncommon proteins: actiflagelin, cathelicidin, and cystatin identified in their venoms. The identified proteins belonged to 14 protein families in N. haje and N. katiensis, and 12 protein families in N. nigricollis. Of the total venom proteins, 3FTx was the most abundant protein family, constituting 52% in N. haje and N. katiensis, and 41% in N. nigricollis, followed by PLA2, constituting 37% in N. nigricollis, 26% in N. haje, and 24% in N. katiensis. Other protein families, including LAAO, CRISPs, VEGF, PLB, CVF, SVMP, SVH, AMP, PI, Globin, Actin, and C-type lectins, were also detected, although, at very low abundances. Quantification of the relative abundance of each protein revealed that alpha and beta fibrinogenase and PLA2, which constituted 18-26% of the total proteome, were the most abundant. The 3 uncommon proteins have no known function in snake venom. However, actiflagelin activates sperm motility; cystatin inhibits angiogenesis, while cathelicidin exerts antimicrobial effects. The three Nigerian Naja genus proteomes displayed 70% similarity in composition, which suggests the possibility of formulating antivenom that may cross-neutralise the venoms of cobra species found in Nigeria. These data provide insights into clinically relevant peptides/proteins present in the venoms of these snakes. Data are available via ProteomeXchange with identifier PXD024627.
Collapse
Affiliation(s)
- Fatima Amin Adamude
- Department of Biochemistry, Faculty of Sciences, Federal University of Lafia, Nasarawa State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Emeka John Dingwoke
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.
| | - Mujitaba Suleiman Abubakar
- Department of Pharmacognosy and Drug Development, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Gadija Mohamed
- Agri-Food Systems and Omics, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infrutec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Ashwil Klein
- Proteomics Research Unit, Department of Biotechnology, Faculty of Natural Sciences, University of Western Cape, South Africa
| | - Abdullahi Balarabe Sallau
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria; Venom, Antivenom and Natural Toxins Research Centre, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
21
|
Mouchbahani-Constance S, Sharif-Naeini R. Proteomic and Transcriptomic Techniques to Decipher the Molecular Evolution of Venoms. Toxins (Basel) 2021; 13:154. [PMID: 33669432 PMCID: PMC7920473 DOI: 10.3390/toxins13020154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Nature's library of venoms is a vast and untapped resource that has the potential of becoming the source of a wide variety of new drugs and therapeutics. The discovery of these valuable molecules, hidden in diverse collections of different venoms, requires highly specific genetic and proteomic sequencing techniques. These have been used to sequence a variety of venom glands from species ranging from snakes to scorpions, and some marine species. In addition to identifying toxin sequences, these techniques have paved the way for identifying various novel evolutionary links between species that were previously thought to be unrelated. Furthermore, proteomics-based techniques have allowed researchers to discover how specific toxins have evolved within related species, and in the context of environmental pressures. These techniques allow groups to discover novel proteins, identify mutations of interest, and discover new ways to modify toxins for biomimetic purposes and for the development of new therapeutics.
Collapse
Affiliation(s)
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G4, Canada;
| |
Collapse
|
22
|
Tan CH, Bourges A, Tan KY. King Cobra and snakebite envenomation: on the natural history, human-snake relationship and medical importance of Ophiophagus hannah. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210051. [PMID: 35069710 PMCID: PMC8733962 DOI: 10.1590/1678-9199-jvatitd-2021-0051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/25/2021] [Indexed: 01/28/2023] Open
Abstract
King Cobra (Ophiophagus hannah) has a significant place in many
cultures, and is a medically important venomous snake in the world. Envenomation
by this snake is highly lethal, manifested mainly by neurotoxicity and local
tissue damage. King Cobra may be part of a larger species complex, and is widely
distributed across Southeast Asia, southern China, northern and eastern regions
as well as the Western Ghats of India, indicating potential geographical
variation in venom composition. There is, however, only one species-specific
King Cobra antivenom available worldwide that is produced in Thailand, using
venom from the snake of Thai origin. Issues relating to the management of King
Cobra envenomation (e.g., variation in the composition and
toxicity of the venom, limited availability and efficacy of antivenom), and
challenges faced in the research of venom (in particular proteomics), are rarely
addressed. This article reviews the natural history and sociocultural importance
of King Cobra, cases of snakebite envenomation caused by this species, current
practice of management (preclinical and clinical), and major toxinological
studies of the venom with a focus on venom proteomics, toxicity and
neutralization. Unfortunately, epidemiological data of King Cobra bite is
scarce, and venom proteomes reported in various studies revealed marked
discrepancies in details. Challenges, such as inconsistency in snake venom
sampling, varying methodology of proteomic analysis, lack of mechanistic and
antivenomic studies, and controversy surrounding antivenom use in treating King
Cobra envenomation are herein discussed. Future directions are proposed,
including the effort to establish a standard, comprehensive Pan-Asian proteomic
database of King Cobra venom, from which the venom variation can be determined.
Research should be undertaken to characterize the toxin antigenicity, and to
develop an antivenom with improved efficacy and wider geographical utility. The
endeavors are aligned with the WHO´s roadmap that aims to reduce the disease
burden of snakebite by 50% before 2030.
Collapse
Affiliation(s)
| | - Aymeric Bourges
- University of Malaya, Malaysia; Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
23
|
Ghezellou P, Albuquerque W, Garikapati V, Casewell NR, Kazemi SM, Ghassempour A, Spengler B. Integrating Top-Down and Bottom-Up Mass Spectrometric Strategies for Proteomic Profiling of Iranian Saw-Scaled Viper, Echis carinatus sochureki, Venom. J Proteome Res 2020; 20:895-908. [PMID: 33225711 DOI: 10.1021/acs.jproteome.0c00687] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Saw-scaled or carpet vipers (genus Echis) are considered to cause a higher global snakebite mortality than any other snake. Echis carinatus sochureki (ECS) is a widely distributed snake species, also found across the thirteen provinces of Iran, where it is assumed to be responsible for the most snakebite envenomings. Here, we collected the Iranian specimens of ECS from three different geographically distinct populations, investigated food habits, and performed toxicity assessment and venom proteome profiling to better understand saw-scaled viper life. Our results show that the prey items most commonly found in all populations were arthropods, with scorpions from the family Buthidae particularly well represented. LD50 (median lethal dose) values of the crude venom demonstrate highly comparable venom toxicities in mammals. Consistent with this finding, venom characterization via top-down and bottom-up proteomics, applied to both crude venoms and size-exclusion chromatographic fractions, revealed highly comparable venom compositions among the different populations. By combining all proteomics data, we identified 22 protein families from 102 liquid chromatography and tandem mass spectrometry (LC-MS/MS) raw files, including the most abundant snake venom metalloproteinases (SVMPs, 29-34%); phospholipase A2 (PLA2s, 26-31%); snake venom serine proteinases (SVSPs, 11-12%); l-amino acid oxidases (LAOs, 8-11%), C-type lectins/lectin-like (CTLs, 7-9%) protein families, and many newly detected ones, e.g., renin-like aspartic proteases (RLAPs), fibroblast growth factors (FGFs), peptidyl-prolyl cis-trans isomerases (PPIs), and venom vasodilator peptides (VVPs). Furthermore, we identified and characterized methylated, acetylated, and oxidized proteoforms relating to the PLA2 and disintegrin toxin families and the site of their modifications. It thus seems that post-translational modifications (PTMs) of toxins, particularly target lysine residues, may play an essential role in the structural and functional properties of venom proteins and might be able to influence the therapeutic response of antivenoms, to be investigated in future studies.
Collapse
Affiliation(s)
- Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, U.K
| | - Seyed Mahdi Kazemi
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Alireza Ghassempour
- Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983963113, Iran
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
24
|
Proteomic Investigations of Two Pakistani Naja Snake Venoms Species Unravel the Venom Complexity, Posttranslational Modifications, and Presence of Extracellular Vesicles. Toxins (Basel) 2020; 12:toxins12110669. [PMID: 33105837 PMCID: PMC7690644 DOI: 10.3390/toxins12110669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Latest advancement of omics technologies allows in-depth characterization of venom compositions. In the present work we present a proteomic study of two snake venoms of the genus Naja i.e., Naja naja (black cobra) and Naja oxiana (brown cobra) of Pakistani origin. The present study has shown that these snake venoms consist of a highly diversified proteome. Furthermore, the data also revealed variation among closely related species. High throughput mass spectrometric analysis of the venom proteome allowed to identify for the N. naja venom 34 protein families and for the N. oxiana 24 protein families. The comparative evaluation of the two venoms showed that N. naja consists of a more complex venom proteome than N. oxiana venom. Analysis also showed N-terminal acetylation (N-ace) of a few proteins in both venoms. To the best of our knowledge, this is the first study revealing this posttranslational modification in snake venom. N-ace can shed light on the mechanism of regulation of venom proteins inside the venom gland. Furthermore, our data showed the presence of other body proteins, e.g., ankyrin repeats, leucine repeats, zinc finger, cobra serum albumin, transferrin, insulin, deoxyribonuclease-2-alpha, and other regulatory proteins in these venoms. Interestingly, our data identified Ras-GTpase type of proteins, which indicate the presence of extracellular vesicles in the venom. The data can support the production of distinct and specific anti-venoms and also allow a better understanding of the envenomation and mechanism of distribution of toxins. Data are available via ProteomeXchange with identifier PXD018726.
Collapse
|
25
|
Rusmili MRA, Othman I, Abidin SAZ, Yusof FA, Ratanabanangkoon K, Chanhome L, Hodgson WC, Chaisakul J. Variations in neurotoxicity and proteome profile of Malayan krait (Bungarus candidus) venoms. PLoS One 2019; 14:e0227122. [PMID: 31887191 PMCID: PMC6936869 DOI: 10.1371/journal.pone.0227122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/12/2019] [Indexed: 11/18/2022] Open
Abstract
Malayan krait (Bungarus candidus) is a medically important snake species found in Southeast Asia. The neurotoxic effects of envenoming present as flaccid paralysis of skeletal muscles. It is unclear whether geographical variation in venom composition plays a significant role in the degree of clinical neurotoxicity. In this study, the effects of geographical variation on neurotoxicity and venom composition of B. candidus venoms from Indonesia, Malaysia and Thailand were examined. In the chick biventer cervicis nerve-muscle preparation, all venoms abolished indirect twitches and attenuated contractile responses to nicotinic receptor agonists, with venom from Indonesia displaying the most rapid neurotoxicity. A proteomic analysis indicated that three finger toxins (3FTx), phospholipase A2 (PLA2) and Kunitz-type serine protease inhibitors were common toxin groups in the venoms. In addition, venom from Thailand contained L-amino acid oxidase (LAAO), cysteine rich secretory protein (CRISP), thrombin-like enzyme (TLE) and snake venom metalloproteinase (SVMP). Short-chain post-synaptic neurotoxins were not detected in any of the venoms. The largest quantity of long-chain post-synaptic neurotoxins and non-conventional toxins was found in the venom from Thailand. Analysis of PLA2 activity did not show any correlation between the amount of PLA2 and the degree of neurotoxicity of the venoms. Our study shows that variation in venom composition is not limited to the degree of neurotoxicity. This investigation provides additional insights into the geographical differences in venom composition and provides information that could be used to improve the management of Malayan krait envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Muhamad Rusdi Ahmad Rusmili
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan Campus, Bandar Indera Mahkota, Kuantan, Pahang Darul Makmur, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Fathin Athirah Yusof
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Bandar Sunway, Malaysia
| | - Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Wayne C. Hodgson
- Monash Venom Group, Department of Pharmacology, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
- * E-mail: ,
| |
Collapse
|
26
|
Comparative proteomes, immunoreactivities and neutralization of procoagulant activities of Calloselasma rhodostoma (Malayan pit viper) venoms from four regions in Southeast Asia. Toxicon 2019; 169:91-102. [DOI: 10.1016/j.toxicon.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/20/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
|
27
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|