1
|
Fontana ACK, Poli AN, Gour J, Srikanth YV, Anastasi N, Ashok D, Khatiwada A, Reeb KL, Cheng MH, Bahar I, Rawls SM, Salvino JM. Synthesis and Structure-Activity Relationships for Glutamate Transporter Allosteric Modulators. J Med Chem 2024; 67:6119-6143. [PMID: 38626917 PMCID: PMC11056993 DOI: 10.1021/acs.jmedchem.3c01909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Excitatory amino acid transporters (EAATs) are essential CNS proteins that regulate glutamate levels. Excess glutamate release and alteration in EAAT expression are associated with several CNS disorders. Previously, we identified positive allosteric modulators (PAM) of EAAT2, the main CNS transporter, and have demonstrated their neuroprotective properties in vitro. Herein, we report on the structure-activity relationships (SAR) for the analogs identified from virtual screening and from our medicinal chemistry campaign. This work identified several selective EAAT2 positive allosteric modulators (PAMs) such as compounds 4 (DA-023) and 40 (NA-014) from a library of analogs inspired by GT949, an early generation compound. This series also provides nonselective EAAT PAMs, EAAT inhibitors, and inactive compounds that may be useful for elucidating the mechanism of EAAT allosteric modulation.
Collapse
Affiliation(s)
- Andréia C. K. Fontana
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adi N.R. Poli
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Jitendra Gour
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Yellamelli V.V. Srikanth
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas Anastasi
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Devipriya Ashok
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Apeksha Khatiwada
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Katelyn L. Reeb
- Department
of Pharmacology and Physiology, Drexel University
College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Mary Hongying Cheng
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Ivet Bahar
- Department
of Biochemistry and Cell Biology, College of Arts & Sciences and
School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer
Center for Physical & Quantitative Biology, Stony Brook University, Stony
Brook, New York 11794, United States
| | - Scott M. Rawls
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140United States
| | - Joseph M. Salvino
- Medicinal
Chemistry, Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
- The
Wistar
Cancer Center Molecular Screening, The Wistar
Institute, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Keimasi M, Salehifard K, Mirshah Jafar Esfahani N, Esmaeili F, Farghadani A, Amirsadri M, Keimasi M, Noorbakhshnia M, Moradmand M, Mofid MR. The synergic effects of presynaptic calcium channel antagonists purified from spiders on memory elimination of glutamate-induced excitotoxicity in the rat hippocampus trisynaptic circuit. Front Mol Biosci 2023; 10:1243976. [PMID: 38099194 PMCID: PMC10720730 DOI: 10.3389/fmolb.2023.1243976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The hippocampus is a complex area of the mammalian brain and is responsible for learning and memory. The trisynaptic circuit engages with explicit memory. Hippocampal neurons express two types of presynaptic voltage-gated calcium channels (VGCCs) comprising N and P/Q-types. These VGCCs play a vital role in the release of neurotransmitters from presynaptic neurons. The chief excitatory neurotransmitter at these synapses is glutamate. Glutamate has an essential function in learning and memory under normal conditions. The release of neurotransmitters depends on the activity of presynaptic VGCCs. Excessive glutamate activity, due to either excessive release or insufficient uptake from the synapse, leads to a condition called excitotoxicity. This pathological state is common among all neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Under these conditions, glutamate adversely affects the trisynaptic circuitry, leading to synaptic destruction and loss of memory and learning performance. This study attempts to clarify the role of presynaptic VGCCs in memory performance and reveals that modulating the activity of presynaptic calcium channels in the trisynaptic pathway can regulate the excitotoxic state and consequently prevent the elimination of neurons and synaptic degradation. All of these can lead to an improvement in learning and memory function. In the current study, two calcium channel blockers-omega-agatoxin-Aa2a and omega-Lsp-IA-were extracted, purified, and identified from spiders (Agelena orientalis and Hogna radiata) and used to modulate N and P/Q VGCCs. The effect of omega-agatoxin-Aa2a and omega-Lsp-IA on glutamate-induced excitotoxicity in rats was evaluated using the Morris water maze task as a behavioral test. The local expression of synaptophysin (SYN) was visualized for synaptic quantification using an immunofluorescence assay. The electrophysiological amplitudes of the field excitatory postsynaptic potentials (fEPSPs) in the input-output and LTP curves of the mossy fiber and Schaffer collateral circuits were recorded. The results of our study demonstrated that N and P/Q VGCC modulation in the hippocampus trisynaptic circuit of rats with glutamate-induced excitotoxicity dysfunction could prevent the destructive consequences of excitotoxicity in synapses and improve memory function and performance.
Collapse
Affiliation(s)
- Mohammad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Mirshah Jafar Esfahani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Arman Farghadani
- Department of Biology, Faculty of Biological Sciences, University Duisburg-Essen, Essen, Germany
| | - Mohammadreza Amirsadri
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadjavad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Majid Moradmand
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Hu Y, Meng B, Yin S, Yang M, Li Y, Liu N, Li S, Liu Y, Sun D, Wang S, Wang Y, Fu Z, Wu Y, Pang A, Sun J, Wang Y, Yang X. Scorpion venom peptide HsTx2 suppressed PTZ-induced seizures in mice via the circ_0001293/miR-8114/TGF-β2 axis. J Neuroinflammation 2022; 19:284. [PMID: 36457055 PMCID: PMC9713996 DOI: 10.1186/s12974-022-02647-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Due to the complexity of the mechanisms involved in epileptogenesis, the available antiseizure drugs (ASDs) do not meet clinical needs; hence, both the discovery of new ASDs and the elucidation of novel molecular mechanisms are very important. METHODS BALB/c mice were utilized to establish an epilepsy model induced by pentylenetetrazol (PTZ) administration. The peptide HsTx2 was administered for treatment. Primary astrocyte culture, immunofluorescence staining, RNA sequencing, identification and quantification of mouse circRNAs, cell transfection, bioinformatics and luciferase reporter analyses, enzyme-linked immunosorbent assay, RNA extraction and reverse transcription-quantitative PCR, Western blot and cell viability assays were used to explore the potential mechanism of HsTx2 via the circ_0001293/miR-8114/TGF-β2 axis. RESULTS The scorpion venom peptide HsTx2 showed an anti-epilepsy effect, reduced the inflammatory response, and improved the circular RNA circ_0001293 expression decrease caused by PTZ in the mouse brain. Mechanistically, in astrocytes, circ_0001293 acted as a sponge of endogenous microRNA-8114 (miR-8114), which targets transforming growth factor-beta 2 (TGF-β2). The knockdown of circ_0001293, overexpression of miR-8114, and downregulation of TGF-β2 all reversed the anti-inflammatory effects and the influence of HsTx2 on the MAPK and NF-κB signaling pathways in astrocytes. Moreover, both circ_0001293 knockdown and miR-8114 overexpression reversed the beneficial effects of HsTx2 on inflammation, epilepsy progression, and the MAPK and NF-κB signaling pathways in vivo. CONCLUSIONS HsTx2 suppressed PTZ-induced epilepsy by ameliorating inflammation in astrocytes via the circ_0001293/miR-8114/TGF-β2 axis. Our results emphasized that the use of exogenous peptide molecular probes as a novel type of ASD, as well as to explore the novel endogenous noncoding RNA-mediated mechanisms of epilepsy, might be a promising research area.
Collapse
Affiliation(s)
- Yan Hu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China ,grid.452826.fDepartment of Gynecology, Third Affiliated Hospital of Kunming Medical University, Kunming, 650118 Yunnan China
| | - Buliang Meng
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Saige Yin
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Meifeng Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yilin Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Naixin Liu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Shanshan Li
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yixiang Liu
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Dandan Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Siyu Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yinglei Wang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Zhe Fu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Yutong Wu
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ailan Pang
- grid.414902.a0000 0004 1771 3912Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650031 Yunnan China
| | - Jun Sun
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| | - Ying Wang
- grid.413059.a0000 0000 9952 9510Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, 650504 Yunnan China
| | - Xinwang Yang
- grid.285847.40000 0000 9588 0960Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500 Yunnan China
| |
Collapse
|
4
|
Lima LSD, Loyola V, Bicca JVML, Faro L, Vale CLC, Lotufo Denucci B, Mortari MR. Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation. J Neurosci Res 2022; 100:1969-1986. [PMID: 35934922 DOI: 10.1002/jnr.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vinícius Loyola
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - João Victor Montenegro Luzardo Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lucas Faro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Camilla Lepesqueur Costa Vale
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Lotufo Denucci
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
5
|
Hong GP, Kim MH, Kim HJ. Sex-related Differences in Glial Fibrillary Acidic Protein-positive GABA Regulate Neuropathology Following Pilocarpine-induced Status Epilepticus. Neuroscience 2021; 472:157-166. [PMID: 34400247 DOI: 10.1016/j.neuroscience.2021.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Status epilepticus (SE) is a life-threatening neurological disorder that causes neuronal death and glial activation. Studies have explained the clinical side effects and lack of effectiveness of neurological disorder treatments based on sex-related differences in brain structure and function. However, the sex-specific outcomes of seizure disorders and the underlying mechanisms remain unknown. We compared SE-induced behavioral and pathophysiological changes in male and female mice. The time taken to reach stage 6 seizure following pilocarpine injection was shorter in male mice than in female mice, and the prevalence of SE was higher in male mice than in female mice. Fluoro-Jade B staining revealed more extensive SE-induced hippocampal neuronal death in male mice than in female mice. Glial cells were more activated in male mice than in female mice. In contrast, astrocyte-derived γ-aminobutyric acid (GABA)-immunostaining was less expressed in male mice than in female mice. Moreover, the mRNA levels of inflammatory cytokines released from activated glial cells were higher in male mice than in female mice. Notably, the mRNA level of astrocytic γ-aminobutyric acid transporter (GAT-3) involved in extracellular GABA uptake was lower in female mice than in male mice, while the mRNA levels of glutamate/aspartate transporter (GLAST (EAAT1)) and glutamate transporter (GLT-1 (EAAT2)) involved in extracellular glutamate uptake were higher in female mice. Our findings suggest that male mice are more vulnerable to SE than female mice, resulting in more extensive neuronal cell death and glial activation in male mice, partly due to increased GAT-3 expression that subsequently leads to reduced glial fibrillary acidic protein (GFAP)-positive GABA content assessed with anti-GABA antibodies.
Collapse
Affiliation(s)
- Geum Pyo Hong
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Mi-Hye Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
6
|
Forster YM, Green JL, Khatiwada A, Liberato JL, Narayana Reddy PA, Salvino JM, Bienz S, Bigler L, dos Santos WF, Karklin Fontana AC. Elucidation of the Structure and Synthesis of Neuroprotective Low Molecular Mass Components of the Parawixia bistriata Spider Venom. ACS Chem Neurosci 2020; 11:1573-1596. [PMID: 32343555 DOI: 10.1021/acschemneuro.0c00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.
Collapse
Affiliation(s)
- Yvonne M. Forster
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Jennifer Leigh Green
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Apeksha Khatiwada
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - José Luiz Liberato
- Department of Biology, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | | | - Joseph M. Salvino
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Stefan Bienz
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, CH 8057, Switzerland
| | | | - Andréia Cristina Karklin Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
7
|
Primini EO, Liberato JL, Fontana ACK, dos Santos WF. Neuroprotective properties of RT10, a fraction isolated from Parawixia bistriata spider venom, against excitotoxicity injury in neuron-glia cultures. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148818. [PMID: 31131008 PMCID: PMC6533932 DOI: 10.1590/1678-9199-jvatitd-1488-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/15/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. METHODS Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. RESULTS In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. CONCLUSION RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.
Collapse
Affiliation(s)
- Eduardo Octaviano Primini
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
| | - José Luiz Liberato
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| | | | - Wagner Ferreira dos Santos
- Neurobiology and Venoms Laboratory, Department of Biology, College
of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo,
Ribeirão Preto, SP, Brazil
- Institute for Neurosciences and Behavior - INeC, Ribeirão Preto, SP,
Brazil
| |
Collapse
|