1
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Jiang K, Chen Z, Zang Y, Shi Y, Shang C, Jiao X, Cai J, Gao X. Functional characterization of Vip3Aa from Bacillus thuringiensis reveals the contributions of specific domains to its insecticidal activity. J Biol Chem 2023; 299:103000. [PMID: 36764522 PMCID: PMC10017365 DOI: 10.1016/j.jbc.2023.103000] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Microbially derived, protein-based biopesticides offer a more sustainable pest management alternative to synthetic pesticides. Vegetative insecticidal proteins (Vip3), multidomain proteins secreted by Bacillus thuringiensis, represent a second-generation insecticidal toxin that has been preliminarily used in transgenic crops. However, the molecular mechanism underlying Vip3's toxicity is poorly understood. Here, we determine the distinct functions and contributions of the domains of the Vip3Aa protein to its toxicity against Spodoptera frugiperda larvae. We demonstrate that Vip3Aa domains II and III (DII-DIII) bind the midgut epithelium, while DI is essential for Vip3Aa's stability and toxicity inside the protease-enriched host insect midgut. DI-DIII can be activated by midgut proteases and exhibits cytotoxicity similar to full-length Vip3Aa. In addition, we determine that DV can bind the peritrophic matrix via its glycan-binding activity, which contributes to Vip3Aa insecticidal activity. In summary, this study provides multiple insights into Vip3Aa's mode-of-action which should significantly facilitate the clarification of its insecticidal mechanism and its further rational development.
Collapse
Affiliation(s)
- Kun Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yuanrong Zang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiting Shi
- School of Life Sciences, Shandong University, Qingdao, China; Taishan College, Shandong University, Jinan, China
| | - Chengbin Shang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xuyao Jiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
3
|
Kang S, Zhu X, Wu Q, Wang S, Crickmore N, Zhang Y, Guo Z. Critical Analysis of Multi-Omic Data from a Strain of Plutella xylostella Resistant to Bacillus thuringiensis Cry1Ac Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11419-11428. [PMID: 36040024 DOI: 10.1021/acs.jafc.2c03618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid evolution of resistance in crop pests to Bacillus thuringiensis (Bt) products threatens their widespread use, especially as pests appear to develop resistance through a range of different physiological adaptations. With such a diverse range of mechanisms reported, researchers have resorted to multi-omic approaches to understand the molecular basis of resistance. Such approaches generate a lot of data making it difficult to establish where causal links between physiological changes and resistance exist. In this study, a combination of RNA-Seq and iTRAQ was used with a strain of diamondback moth, Plutella xylostella (L.), whose resistance mechanism is well understood. While some of the causal molecular changes in the resistant strain were detected, other previously verified changes were not detected. We suggest that while multi-omic studies have use in validating a proposed resistance mechanism, they are of limited value in identifying such a mechanism in the first place.
Collapse
Affiliation(s)
- Shi Kang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
An Integrative Analysis of Transcriptomics and Proteomics Reveals Novel Insights into the Response in the Midgut of Spodoptera frugiperda Larvae to Vip3Aa. Toxins (Basel) 2022; 14:toxins14010055. [PMID: 35051032 PMCID: PMC8781260 DOI: 10.3390/toxins14010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
The insecticidal Vip3 proteins, secreted by Bacillus thuringiensis (Bt) during its vegetative growth phase, are currently used in Bt crops to control insect pests, and are genetically distinct from known insecticidal Cry proteins. Compared with Cry toxins, the mechanisms of Vip3 toxins are still poorly understood. Here, the responses of Spodoptera frugiperda larvae after Vip3Aa challenge are characterized. Using an integrative analysis of transcriptomics and proteomics, we found that Vip3Aa has enormous implications for various pathways. The downregulated genes and proteins were mainly enriched in metabolic pathways, including the insect hormone synthesis pathway, whereas the upregulated genes and proteins were mainly involved in the caspase-mediated apoptosis pathway, along with the MAPK signaling and endocytosis pathways. Moreover, we also identified some important candidate genes involved in apoptosis and MAPKs. The present study shows that exposure of S. frugiperda larvae to Vip3Aa activates apoptosis pathways, leading to cell death. The results will promote our understanding of the host response process to the Vip3Aa, and help us to better understand the mode of action of Vip3A toxins.
Collapse
|
5
|
Cloning and characterization of the Cry79Aa1 gene from a lepidopteran active strain of Bacillus thuringiensis. J Invertebr Pathol 2021; 185:107657. [PMID: 34487747 DOI: 10.1016/j.jip.2021.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis (Bt) has been used globally as a biopesticide for effective and environmentally friendly pest control. Research has intensified following the development of resistance by lepidopteran species to Bt insecticidal crystal proteins. Discovering new Bt strains with novel toxin properties which can overcome resistance is one of the strategies to improve pesticide sustainability. The genome of the Bacillus thuringiensis LTS290 strain was sequenced and assembled in 252 contigs containing a total of 6,391,328 bp. The novel cry79Aa1 gene from this strain was identified and cloned. Cry79Aa1 contains 729 amino acid residues and a molecular mass of 84.8 kDa by SDS-PAGE analysis. Cry79Aa1 was found to be active against the lepidopteran larvae of Spodoptera exigua, Helicoverpa armigera, and Plutella xylostella with LC50 values of 13.627 µg/mL, 42.8 µg/mL, and 38.086 µg/mL, respectively. However, Cry79Aa1 protein showed almost no insecticidal activity against Leguminivora glycinivorella, although some degree of growth retardation was observed.
Collapse
|
6
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
7
|
Ren Y, Zhou X, Dong Y, Zhang J, Wang J, Yang M. Exogenous Gene Expression and Insect Resistance in Dual Bt Toxin Populus × euramericana 'Neva' Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:660226. [PMID: 34122482 PMCID: PMC8193859 DOI: 10.3389/fpls.2021.660226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 05/07/2023]
Abstract
Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana 'Neva' by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana 'Neva' lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.
Collapse
Affiliation(s)
- Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Xinglu Zhou
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jinmao Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- *Correspondence: Minsheng Yang,
| |
Collapse
|
8
|
Hurst MRH, Jones S, Young S, Muetzel S, Calder J, van Koten C. Assessment of toxicity and persistence of Yersinia entomophaga and its Yen-Tc associated toxin. PEST MANAGEMENT SCIENCE 2020; 76:4301-4310. [PMID: 32648630 DOI: 10.1002/ps.5997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/06/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The insect-pathogenic bacterium Yersinia entomophaga MH96 is currently under development as a microbial pesticide active against various pasture and crop pests such as the diamondback moth Plutella xylostella and the cotton bollworm Helicoverpa armigeria. To enable nonrestricted field trials of Y. entomophaga MH96, information on the persistence and nontarget effects of the bacterium and its Yen-Tc proteinaceous toxin are required. RESULTS The Y. entomophaga Yen-Tc associated toxin was found to have limited persistence on foliage and is inactivated by UV light. The Yen-Tc was rapidly degraded in ovine or bovine rumen fluid or the intestinal fluid of H. armigera. In H. armigera an intestinal protein of >50 kDa was found to cleave the Yen-Tc bond. Assessment of Y. entomophaga persistence on foliage and in soil found that after 42 days the bacterium could not be detected in soil at 20% soil moisture content but persisted for 72 days at 30-40% soil moisture. Nontarget effects of Y. entomophaga towards earthworms found that the bacterium afforded no adverse effects on worm growth or behavior. A summary of historic Yen-Tc and Y. entomophaga persistence and toxicity data is presented. CONCLUSION The bacterium Y. entomophaga and its Yen-Tc associated toxin have limited persistence in the environment, with the Yen-Tc being susceptible to UV inactivation and proteolytic degradation, and the bacterium persisting longer in soil of a high moisture content. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Sandra Jones
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Sandra Young
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Stefan Muetzel
- Animal Science, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Joanne Calder
- Forage Science, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| | - Chikako van Koten
- Knowledge & Analytics, AgResearch, Lincoln Research Centre, Christchurch, New Zealand
| |
Collapse
|
9
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. mBio 2019; 10:mBio.02775-19. [PMID: 31772047 PMCID: PMC6879724 DOI: 10.1128/mbio.02775-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bacillus thuringiensis took advantage of important insect cellular proteins, such as chaperones, involved in maintaining protein homeostasis, to enhance its insecticidal activity. This constitutes a positive loop where the concentrations of Hsp90 and Hsp70 in the gut lumen are likely to increase as midgut cells burst due to Cry1A pore formation action. Hsp90 protects Cry1A protoxin from degradation and enhances receptor binding, resulting in increased toxicity. The effect of insect chaperones on Cry toxicity could have important biotechnological applications to enhance the toxicity of Cry proteins to insect pests, especially those that show low susceptibility to these toxins. Bacillus thuringiensis Cry proteins are pore-forming insecticidal toxins with specificity against different crop pests and insect vectors of human diseases. Previous work suggested that the insect host Hsp90 chaperone could be involved in Cry toxin action. Here, we show that the interaction of Cry toxins with insect Hsp90 constitutes a positive loop to enhance the performance of these toxins. Plutella xylostella Hsp90 (PxHsp90) greatly enhanced Cry1Ab or Cry1Ac toxicity when fed together to P. xylostella larvae and also in the less susceptible Spodoptera frugiperda larvae. PxHsp90 bound Cry1Ab and Cry1Ac protoxins in an ATP- and chaperone activity-dependent interaction. The chaperone Hsp90 participates in the correct folding of proteins and may suppress mutations of some client proteins, and we show here that PxHsp90 recovered the toxicity of the Cry1AbG439D protoxin affected in receptor binding, in contrast to the Cry1AbR99E or Cry1AbE129K mutant, affected in oligomerization or membrane insertion, respectively, which showed a slight toxicity improvement. Specifically, PxHsp90 enhanced the binding of Cry1AbG439D protoxin to the cadherin receptor. Furthermore, PxHsp90 protected Cry1A protoxins from degradation by insect midgut proteases. Our data show that PxHsp90 assists Cry1A proteins by enhancing their binding to the receptor and by protecting Cry protoxin from gut protease degradation. Finally, we show that the insect cochaperone protein PxHsp70 also increases the toxicity of Cry1Ac in P. xylostella larvae, in contrast to a bacterial GroEL chaperone, which had a marginal effect, indicating that the use of insect chaperones along with Cry toxins could have important biotechnological applications for the improvement of Cry insecticidal activity, resulting in effective control of insect pests.
Collapse
|
11
|
Oliveira AH, Fernandes KM, Gonçalves WG, Zanuncio JC, Serrão JE. A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 53:100885. [PMID: 31614307 DOI: 10.1016/j.asd.2019.100885] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
The permeability of the peritrophic matrix, essential for its function, depends on its chemical composition. The objective was to determine if the permeability of the peritrophic matrix varies along the midgut and in the presence of anti-peritrophin-55 antibody in Melipona quadrifasciata and Apis mellifera bees. The thickness of the peritrophic matrix in both species varies between the anterior and posterior midgut regions in workers. In A. mellifera dextran molecules with 40 kDa cross the peritrophic matrix, whereas those ≥70 kDa are retained in the endoperitrophic space. In M. quadrifasciata the peritrophic matrix permeability was for molecules <40 kDa. Bees fed on anti-peritrophin-55 antibody showed an increase in peritrophic matrix permeability, but survival was not affected. In the bees studied, the peritrophic matrices have morphological differences between midgut regions, but there is no difference in their permeability along the midgut, which is affected by peritrophin 55.
Collapse
Affiliation(s)
- André Henrique Oliveira
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | | | - José Cola Zanuncio
- Department of Entomology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil.
| |
Collapse
|