1
|
Weldon A, Burrows AM, Wirdateti W, Nugraha TP, Supriatna N, Smith TD, Nekaris KAI. From masks to muscles: Mapping facial structure of Nycticebus. Anat Rec (Hoboken) 2024; 307:3870-3883. [PMID: 38872582 DOI: 10.1002/ar.25519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Facial musculature in mammals underlies mastication and nonverbal communicative facial displays. Our understanding of primate facial expression comes primarily from haplorrhines (monkeys and apes), while our understanding of strepsirrhine (lemurs and lorises) facial expression remains incomplete. We examined the facial muscles of six specimens from three Nycticebus species (Nycticebus coucang, Nycticebus javanicus, and Nycticebus menagensis) using traditional dissection methodology and novel three-dimensional facial scanning to produce a detailed facial muscle map, and compared these results to another nocturnal strepsirrhine genus, the greater bushbaby (Otolemur spp.). We observed 19 muscles with no differences among Nycticebus specimens. A total of 17 muscles were observed in both Nycticebus and Otolemur, with little difference in attachment and function but some difference in directionality of movement. In the oral region, we note the presence of the depressor anguli oris, which has been reported in other primate species but is absent in Otolemur. The remaining muscle is a previously undescribed constrictor nasalis muscle located on the lateral nasal alar region, likely responsible for constriction of the nares. We propose this newly described muscle may relate to vomeronasal organ functioning and the importance of the use of nasal musculature in olfactory communication. We discuss how this combined methodology enabled imaging of small complex muscles. We further discuss how the facial anatomy of Nycticebus spp. relates to their unique physiology and behavioral ecology.
Collapse
Affiliation(s)
- A Weldon
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
| | - A M Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - W Wirdateti
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency [BRIN], Indonesia
| | - T P Nugraha
- Research Center for Applied Zoology, National Research and Innovation Agency [BRIN], Indonesia
| | - N Supriatna
- National Research and Innovation Agency [BRIN], Indonesia
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - K A I Nekaris
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
2
|
Fuller G, Wirdateti, Nekaris KAI. Evaluating the Use of Chemical Weapons for Capturing Prey by a Venomous Mammal, the Greater Slow Loris ( Nycticebus coucang). Animals (Basel) 2024; 14:1438. [PMID: 38791656 PMCID: PMC11117385 DOI: 10.3390/ani14101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Few mammals are venomous, including one group of primates-slow (Nycticebus spp.) and pygmy (Xanthonycticebus spp.) lorises. Hypotheses for the evolutionary function of venom in these primates include defense from predators or ectoparasites, communication or competition with conspecifics, and the capture of prey. We tested the prey capture hypothesis in 75 trials with 22 wild-caught greater slow lorises (N. coucang) housed in a rescue center in Java, Indonesia. We experimentally offered the slow lorises arthropod prey items varying in size, escape potential, and toxicity and recorded venom-related and predatory behaviors using live and video observations. The slow lorises visually targeted arthropod prey, approached it quickly and efficiently, and captured it with a manual grasping motion. They rarely performed venom-related behaviors and seemed to do so in a defensive context. The slow lorises exhibited little variation in pre-capture behavior as a function of prey size or escape potential. In response to noxious prey, the slow lorises performed tongue-flicking and other investigative behaviors that indicate they are using chemosensory input to assess prey characteristics. These data suggest it is unlikely that slow lorises use chemical weapons to subdue arthropod prey and may support, instead, a defensive function for slow loris venom.
Collapse
Affiliation(s)
- Grace Fuller
- Nocturnal Primate Research Group, School of Social Sciences and Law, Oxford Brookes University, Oxford OX3 0BP, UK;
- Detroit Zoological Society, Royal Oak, MI 48067, USA
| | - Wirdateti
- Division Zoology, Research Center for Biosystematics and Evolution, Badan Riset dan Inovasi Nasional (BRIN), Kawasan Sains dan Teknologi (KST), Soekarno, Cibinong 16911, Indonesia;
| | - K. A. I. Nekaris
- Nocturnal Primate Research Group, School of Social Sciences and Law, Oxford Brookes University, Oxford OX3 0BP, UK;
| |
Collapse
|
3
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
4
|
Laliberté J, Rioux È, Lesmerises R, St-Laurent MH. Linking sexual size dimorphism to trophic niche partitioning in a generalist predator. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sexual size dimorphism is a common phenomenon in mammals, and researchers have been trying to demonstrate the evolutionary causes leading to sexual dimorphism. Two main hypotheses emerged: (1) the sexual selection hypothesis and (2) the sexual competition hypothesis (also called resource partitioning hypothesis). Here, we attempted to link sexual dimorphism in fishers ( Pekania pennanti (Erxleben, 1777)) with their fall diet using stable isotope profiling and body and skull measurements. We used the carcasses of 39 fishers which were caught in eastern Québec during fall 2014 by volunteer trappers as well as several potential prey items ranging from small rodents to cervids. We expected minimal niche overlap between sexes, as males should be able to exploit different prey species than females. We also expected to observe an effect of age class (adults vs. juveniles) on trophic niche. As expected, we found great evidence of sexual dimorphism in both body mass and skull measurements: males were heavier and longer than females and had a larger zygomatic and intracanine width and a longer skull. While proportions of prey in diet according to sex and age did not vary greatly, we found some evidence of niche partitioning using Layman's metrics. Indeed, females tended to have a less diversified and more similar diet compared to one another, whereas males showed more diversified and contrasted diets. Despite our limited sample size, our findings provide partial support to the sexual competition hypothesis, as the difference in body and skull size based on sex could have evolved to lessen intraspecific competition in fishers.
Collapse
Affiliation(s)
- Jérôme Laliberté
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Centre for Forest Research, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Ève Rioux
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Centre for Forest Research, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Rémi Lesmerises
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Centre for Forest Research, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Martin-Hugues St-Laurent
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Centre for Forest Research, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
5
|
Inoue F, Inoue A, Tsuboi T, Ichikawa T, Suga M, Ishihara S, Nakayama S. Severe Anaphylactic Shock Following a Slow Loris Bite in a Patient with Cat Allergy. Intern Med 2021; 60:3037-3039. [PMID: 33776006 PMCID: PMC8502664 DOI: 10.2169/internalmedicine.6775-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The slow loris monkey is one of the few venomous mammals. Its venom repels predators and can cause anaphylactic shock and even death in humans. The venom protein has been evaluated and has high sequence similarity to cat allergen; however, no studies involving subjects with cat allergy and who have been exposed to slow loris venom have been reported. We herein report the first case of severe anaphylactic shock following a slow loris bite in a patient with cat allergy.
Collapse
Affiliation(s)
- Fumiya Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
- Department of Emergency Medicine, Hiroshima Citizens Hospital, Japan
| | - Akihiko Inoue
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| | - Takafumi Tsuboi
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| | - Tetsuya Ichikawa
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| | - Masafumi Suga
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| | - Satoshi Ishihara
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| | - Shinichi Nakayama
- Department of Emergency and Critical Care Medicine, Hyogo Emergency Medical Center, Japan
| |
Collapse
|
6
|
Nekaris KAI, Campera M, Nijman V, Birot H, Rode-Margono EJ, Fry BG, Weldon A, Wirdateti W, Imron MA. Slow lorises use venom as a weapon in intraspecific competition. Curr Biol 2021; 30:R1252-R1253. [PMID: 33080192 DOI: 10.1016/j.cub.2020.08.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animals have evolved an array of spectacular weapons, including antlers, forceps, proboscises, stingers, tusks and horns [1]. Weapons can be present in males and females of species needing to defend critical limiting resources, including food (rhinoceros beetles, Trypoxylus) and territories (fang blennies, Meiacanthus) [1-3]. Chemicals, including sprays, ointments and injected venoms, are another defence system used by animals. As with morphological weapons, venom can serve multiple purposes, including to facilitate feeding, in predation, and in defence when attacked [4]. Although rare, several taxa use venom for agonistic intraspecific competition (e.g. ghost shrimp, Caprella spp.; sea anemones, Actinia equina; cone snails, Conidae; male platypus, Ornithorhynchus anatinus) [4-6]. Another group of venomous mammals are the nocturnal slow lorises (Nycticebus) [7]. Slow loris bites often result in dramatic diagnostic wounds characterised by necrotic gashes to the head and extremities. Although these bites are the major cause of death of lorises in captivity, the function of this aggressive behaviour has never been studied in the wild [7]. Here, through an 8-year study of wounding patterns, territorial behaviour, and agonistic encounters of a wild population of Javan slow lorises (Nycticebus javanicus), we provide strong evidence that venom is used differentially by both sexes to defend territories and mates. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- K A I Nekaris
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK.
| | - Marco Campera
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK
| | - Vincent Nijman
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK
| | - Hélène Birot
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK
| | - Eva Johanna Rode-Margono
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK; Species Conservation Foundation (Stiftung Artenschutz), 10117 Berlin, Germany
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Ariana Weldon
- Oxford Brookes University, Nocturnal Primate Research Group, Faculty of Humanities and Social Sciences, Oxford, UK
| | - Wirdateti Wirdateti
- Division of Zoology, Research Center for Biology, LIPI, Gedung Widyasatwaloka, Jl. Raya Jakarta-Bogor KM 46, Cibinong 16911, Indonesia
| | - Muhammad Ali Imron
- Forest Resources Conservation Department, Gadjah Mada University, Yogyakarta, Indonesia
| |
Collapse
|
7
|
Howell N, Sheard C, Koneru M, Brockelsby K, Ono K, Caro T. Aposematism in mammals. Evolution 2021; 75:2480-2493. [PMID: 34347894 DOI: 10.1111/evo.14320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
Aposematic coloration is traditionally considered to signal unpalatability or toxicity. In mammals, most research has focused on just one form of defense, namely, noxious anal secretions, and its black-and-white advertisement as exemplified by skunks. The original formulation of aposematism, however, encompassed a broader range of morphological, physiological, and behavioral defenses, and there are many mammal species with black-and-white contrasting patterns that do not have noxious adaptations. Here, using Bayesian phylogenetic models and data from 1726 terrestrial nonvolant mammals we find that two aspects of conspicuous coloration, black-and-white coloration patterns on the head and body, advertise defenses that are morphological (spines, large body size), behavioral (pugnacity), and physiological (anal secretions), as well as being involved with sexual signaling and environmental factors linked to crypsis. Within Carnivora, defensive anal secretions are associated with complex black-and-white head patterns and longitudinal black-and-white body striping; in primates, larger bodied species exhibit irregular patches of black-and-white pelage; and in rodents, pugnacity is linked to sharp countershading and irregular blocks of white and black pelage. We show that black-and-white coloration in mammals is multifunctional, that it serves to warn predators of several defenses other than noxious anal secretions, and that aposematism in mammals is not restricted to carnivores.
Collapse
Affiliation(s)
- Natasha Howell
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom
| | - Catherine Sheard
- School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom
| | - Manisha Koneru
- Department of Ecology and Evolution, University of California, Davis, Davis, California, 95616
| | - Kasey Brockelsby
- Department of Ecology and Evolution, University of California, Davis, Davis, California, 95616
| | - Konatsu Ono
- Department of Animal Biology, University of California, Davis, Davis, California, 95616
| | - Tim Caro
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom.,Center for Population Biology, University of California, Davis, Davis, California, 95616
| |
Collapse
|
8
|
Nekaris KA, Campera M, Watkins AR, Weldon AV, Hedger K, Morcatty TQ. Aposematic signaling and seasonal variation in dorsal pelage in a venomous mammal. Ecol Evol 2021; 11:11387-11397. [PMID: 34429927 PMCID: PMC8366853 DOI: 10.1002/ece3.7928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
In mammals, colouration patterns are often related to concealment, intraspecific communication, including aposematic signals, and physiological adaptations. Slow lorises (Nycticebus spp.) are arboreal primates native to Southeast Asia that display stark colour contrast, are highly territorial, regularly enter torpor, and are notably one of only seven mammal taxa that possess venom. All slow loris species display a contrasting stripe that runs cranial-caudally along the median sagittal plane of the dorsum. We examine whether these dorsal markings facilitate background matching, seasonal adaptations, and intraspecific signaling. We analyzed 195 images of the dorsal region of 60 Javan slow loris individuals (Nycticebus javanicus) from Java, Indonesia. We extracted greyscale RGB values from dorsal pelage using ImageJ software and calculated contrast ratios between dorsal stripe and adjacent pelage in eight regions. We assessed through generalized linear mixed models if the contrast ratio varied with sex, age, and seasonality. We also examined whether higher contrast was related to more aggressive behavior or increased terrestrial movement. We found that the dorsal stripe of N. javanicus changed seasonally, being longer and more contrasting in the wet season, during which time lorises significantly increased their ground use. Stripes were most contrasting in younger individuals of dispersal age that were also the most aggressive during capture. The dorsal stripe became less contrasting as a loris aged. A longer stripe when ground use is more frequent can be related to disruptive colouration. A darker anterior region by younger lorises with less fighting experience may allow them to appear larger and fiercer. We provide evidence that the dorsum of a cryptic species can have multimodal signals related to concealment, intraspecific communication, and physiological adaptations.
Collapse
Affiliation(s)
- K. Anne‐Isola Nekaris
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
- Little Fireface ProjectCipagantiJavaIndonesia
| | - Marco Campera
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
- Little Fireface ProjectCipagantiJavaIndonesia
| | - Anna R. Watkins
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| | - Ariana V. Weldon
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| | | | - Thais Q. Morcatty
- Nocturnal Primate Research GroupFaculty of Humanities and Social SciencesOxford Brookes UniversityOxfordUK
| |
Collapse
|
9
|
Caro T, Brockelsby K, Ferrari A, Koneru M, Ono K, Touche E, Stankowich T. The evolution of primate coloration revisited. Behav Ecol 2021. [DOI: 10.1093/beheco/arab029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Primates are noted for their varied and complex pelage and bare skin coloration but the significance of this diverse coloration remains opaque. Using new updated information, novel scoring of coat and skin coloration, and controlling for shared ancestry, we reexamined and extended findings from previous studies across the whole order and the five major clades within it. Across primates, we found (i) direct and indirect evidence for pelage coloration being driven by protective coloration strategies including background matching, countershading, disruptive coloration, and aposematism, (ii) diurnal primates being more colorful, and (iii) the possibility that pelage color diversity is negatively associated with female trichromatic vision; while (iv) reaffirming avoidance of hybridization driving head coloration in males, (v) darker species living in warm, humid conditions (Gloger’s rule), and (vi) advertising to multiple mating partners favoring red genitalia in females. Nonetheless, the importance of these drivers varies greatly across clades. In strepsirrhines and cercopithecoids, countershading is important; greater color diversity may be important for conspecific signaling in more diurnal and social strepsirrhines; lack of female color vision may be associated with colorful strepsirrhines and platyrrhines; whereas cercopithecoids obey Gloger’s rule. Haplorrhines show background matching, aposematism, character displacement, and red female genitalia where several mating partners are available. Our findings emphasize several evolutionary drivers of coloration in this extraordinarily colorful order. Throughout, we used coarse but rigorous measures of coloration, and our ability to replicate findings from earlier studies opens up opportunities for classifying coloration of large numbers of species at a macroevolutionary scale.
Collapse
Affiliation(s)
- Tim Caro
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Center for Population Biology, University of California, 1 Shields Avenue, Davis, Davis, CA 95616, USA
| | - Kasey Brockelsby
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Annie Ferrari
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Manisha Koneru
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Konatsu Ono
- Department of Animal Biology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Edward Touche
- Department of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| |
Collapse
|
10
|
Peplinski J, Malone MA, Fowler KJ, Potratz EJ, Pergams AG, Charmoy KL, Rasheed K, Avdieiev SS, Whelan CJ, Brown JS. Ecology of Fear: Spines, Armor and Noxious Chemicals Deter Predators in Cancer and in Nature. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.682504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, many multicellular and unicellular organisms use constitutive defenses such as armor, spines, and noxious chemicals to keep predators at bay. These defenses render the prey difficult and/or dangerous to subdue and handle, which confers a strong deterrent for predators. The distinct benefit of this mode of defense is that prey can defend in place and continue activities such as foraging even under imminent threat of predation. The same qualitative types of armor-like, spine-like, and noxious defenses have evolved independently and repeatedly in nature, and we present evidence that cancer is no exception. Cancer cells exist in environments inundated with predator-like immune cells, so the ability of cancer cells to defend in place while foraging and proliferating would clearly be advantageous. We argue that these defenses repeatedly evolve in cancers and may be among the most advanced and important adaptations of cancers. By drawing parallels between several taxa exhibiting armor-like, spine-like, and noxious defenses, we present an overview of different ways these defenses can appear and emphasize how phenotypes that appear vastly different can nevertheless have the same essential functions. This cross-taxa comparison reveals how cancer phenotypes can be interpreted as anti-predator defenses, which can facilitate therapy approaches which aim to give the predators (the immune system) the upper hand. This cross-taxa comparison is also informative for evolutionary ecology. Cancer provides an opportunity to observe how prey evolve in the context of a unique predatory threat (the immune system) and varied environments.
Collapse
|
11
|
Munds RA, Titus CL, Moreira LAA, Eggert LS, Blomquist GE. Examining the molecular basis of coat color in a nocturnal primate family (Lorisidae). Ecol Evol 2021; 11:4442-4459. [PMID: 33976821 PMCID: PMC8093732 DOI: 10.1002/ece3.7338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
Organisms use color for camouflage, sexual signaling, or as a warning sign of danger. Primates are one of the most vibrantly colored Orders of mammals. However, the genetics underlying their coat color are poorly known, limiting our ability to study molecular aspects of its evolution. The role of the melanocortin 1 receptor (MC1R) in color evolution has been implicated in studies on rocket pocket mice (Chaetodipus intermediusi), toucans (Ramphastidae), and many domesticated animals. From these studies, we know that changes in MC1R result in a yellow/red or a brown/black morphology. Here, we investigate the evolution of MC1R in Lorisidae, a monophyletic nocturnal primate family, with some genera displaying high contrast variation in color patterns and other genera being monochromatic. Even more unique, the Lorisidae family has the only venomous primate: the slow loris (Nycticebus). Research has suggested that the contrasting coat patterns of slow lorises are aposematic signals for their venom. If so, we predict the MC1R in slow lorises will be under positive selection. In our study, we found that Lorisidae MC1R is under purifying selection (ω = 0.0912). In Lorisidae MC1R, there were a total of 75 variable nucleotides, 18 of which were nonsynonymous. Six of these nonsynonymous substitutions were found on the Perodicticus branch, which our reconstructions found to be the only member of Lorisidae that has predominantly lighter coat color; no substitutions were associated with Nycticebus. Our findings generate new insight into the genetics of pelage color and evolution among a unique group of nocturnal mammals and suggest putative underpinnings of monochromatic color evolution in the Perodicticus lineage.
Collapse
Affiliation(s)
- Rachel A. Munds
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryABCanada
- Nocturnal Primate Research GroupOxford Brookes UniversityOxfordUK
| | - Chelsea L. Titus
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | - Lais A. A. Moreira
- Department of Anthropology & ArchaeologyUniversity of CalgaryCalgaryABCanada
| | - Lori S. Eggert
- Division of Biological SciencesUniversity of MissouriColumbiaMOUSA
| | | |
Collapse
|
12
|
Barrett M, Campera M, Morcatty TQ, Weldon AV, Hedger K, Maynard KQ, Imron MA, Nekaris KAI. Risky Business: The Function of Play in a Venomous Mammal-The Javan Slow Loris ( Nycticebus javanicus). Toxins (Basel) 2021; 13:318. [PMID: 33925251 PMCID: PMC8145416 DOI: 10.3390/toxins13050318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022] Open
Abstract
Immature mammals require opportunities to develop skills that will affect their competitive abilities and reproductive success as adults. One way these benefits may be achieved is through play behavior. While skills in developing use of tusks, antlers, and other weapons mammals have been linked to play, play in venomous animals has rarely been studied. Javan slow lorises (Nycticebus javanicus) use venom to aid in intraspecific competition, yet whether individuals use any behavioral mechanisms to develop the ability to use venom remains unclear. From April 2012 to December 2020, we recorded 663 play events and studied the factors influencing the frequency of play and the postures used during play in wild Javan slow lorises. Regardless of the presence of siblings, two thirds of play partners of young slow lorises were older and more experienced adults. Young lorises engaged in riskier behaviors during play, including using more strenuous postures and playing more in riskier conditions with increased rain and moonlight. We found that play patterns in immature lorises bear resemblance to venom postures used by adults. We suggest that play functions to train immature lorises to deal with future unexpected events, such as random attacks, as seen in other mammalian taxa with weapons. Given the importance of venom use for highly territorial slow lorises throughout their adult lives and the similarities between venom and play postures, we cannot rule out the possibility that play also prepares animals for future venomous fights. We provide here a baseline for the further exploration of the development of this unique behavior in one of the few venomous mammals.
Collapse
Affiliation(s)
- Meg Barrett
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Marco Campera
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Thais Q. Morcatty
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Ariana V. Weldon
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Katherine Hedger
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Keely Q. Maynard
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| | - Muhammad Ali Imron
- Department of Forest Resources Conservation, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - K. A. I. Nekaris
- Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (M.B.); (M.C.); (T.Q.M.); (A.V.W.); (K.H.); (K.Q.M.)
| |
Collapse
|
13
|
Arbuckle K. Special Issue: Evolutionary Ecology of Venom. Toxins (Basel) 2021; 13:toxins13050310. [PMID: 33925276 PMCID: PMC8146639 DOI: 10.3390/toxins13050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
This Special Issue of Toxins aims to increase the profile and understanding of how ecology shapes the evolution of venom systems, and also how venom influences the ecological attributes of and interactions among species [...].
Collapse
Affiliation(s)
- Kevin Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|
14
|
Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach. Toxins (Basel) 2021; 13:toxins13030231. [PMID: 33810196 PMCID: PMC8004749 DOI: 10.3390/toxins13030231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need for food acquisition seem to be the most important for solenodons and especially for shrews. We also present several hypotheses explaining why, despite so many potentially beneficial functions, venomousness is rare even among eulipotyphlans. The tentativeness of many of the arguments presented in this review highlights our main conclusion, i.e., insights regarding the functions of eulipotyphlan venoms merit additional study.
Collapse
|
15
|
|
16
|
Schendel V, Rash LD, Jenner RA, Undheim EAB. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins (Basel) 2019; 11:E666. [PMID: 31739590 PMCID: PMC6891279 DOI: 10.3390/toxins11110666] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lachlan D. Rash
- School of Biomedical Sciences, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|