1
|
Magagna G, Gori M, Russini V, De Angelis V, Spinelli E, Filipello V, Tranquillo VM, De Marchis ML, Bossù T, Fappani C, Tanzi E, Finazzi G. Evaluation of the Virulence Potential of Listeria monocytogenes through the Characterization of the Truncated Forms of Internalin A. Int J Mol Sci 2023; 24:10141. [PMID: 37373288 DOI: 10.3390/ijms241210141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Listeria monocytogenes is a widespread Gram-positive pathogenic bacterium that causes listeriosis, a rather rare but severe foodborne disease. Pregnant women, infants, the elderly, and immunocompromised individuals are considered particularly at risk. L. monocytogenes can contaminate food and food-processing environments. In particular, ready-to-eat (RTE) products are the most common source associated with listeriosis. L. monocytogenes virulence factors include internalin A (InlA), a surface protein known to facilitate bacterial uptake by human intestinal epithelial cells that express the E-cadherin receptor. Previous studies have demonstrated that the presence of premature stop codon (PMSC) mutations naturally occurring in inlA lead to the production of a truncated protein correlated with attenuate virulence. In this study, 849 L. monocytogenes isolates, collected from food, food-processing plants, and clinical cases in Italy, were typed and analyzed for the presence of PMSCs in the inlA gene using Sanger sequencing or whole-genome sequencing (WGS). PMSC mutations were found in 27% of the isolates, predominantly in those belonging to hypovirulent clones (ST9 and ST121). The presence of inlA PMSC mutations in food and environmental isolates was higher than that in clinical isolates. The results reveal the distribution of the virulence potential of L. monocytogenes circulating in Italy and could help to improve risk assessment approaches.
Collapse
Affiliation(s)
- Giulia Magagna
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Gori
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Veronica De Angelis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Elisa Spinelli
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Virginia Filipello
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Vito Massimo Tranquillo
- Programmazione dei Servizi e Controllo di Gestione, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Clara Fappani
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elisabetta Tanzi
- Department of Health Sciences, Università degli Studi di Milano, 20133 Milan, Italy
- Coordinated Research Centre EpiSoMI, Università degli Studi di Milano, 20133 Milan, Italy
| | - Guido Finazzi
- Food Safety Department, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Via A. Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
2
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
3
|
A target fishing study to spot possible biological targets of fusaric acid: Inhibition of protein kinase-A and insights on the underpinning mechanisms. Food Chem Toxicol 2021; 159:112663. [PMID: 34748883 DOI: 10.1016/j.fct.2021.112663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Fusaric acid is a secondary metabolite produced by various Fusarium fungi, present with relatively high incidence in Fusarium-contaminated foods. It was already described as phytotoxic and cytotoxic. However, the understanding of its molecular mechanisms is still fragmentary and further data are needed to ensure an informed assessment of the risk related to its presence in food. This work applied an integrated in silico/in vitro approach to reveal novel potential biological activities of fusaric acid and to investigate the underpinning mechanisms. An in silico reverse screening was used to identify novel biological targets for fusaric acid. Computational results indicated as target protein kinase-A, which was confirmed with biochemical cell-free assays providing evidence of its actual inhibitory potential. Cell-based experiments on intestinal cells (HCEC-1CT cells) identified the mitochondrial network and cell membranes as potentially affected organelles, possibly resulting from PKA inhibition. The integration of 3D molecular modeling supported the plausibility of fusaric acid-dependent inhibition. From the hazard identification perspective, considering the Low Observed Adverse Effect Level described here (0.1 mM) and the possible level of contamination in food, fusaric acid might raise concern from a food safety standpoint and the gastrointestinal tract was described as a meaningful system to investigate with priority.
Collapse
|
4
|
Medeiros M, Castro VHLD, Mota ALADA, Pereira MG, De Martinis ECP, Perecmanis S, Santana AP. Assessment of Internalin A Gene Sequences and Cell Adhesion and Invasion Capacity of Listeria monocytogenes Strains Isolated from Foods of Animal and Related Origins. Foodborne Pathog Dis 2020; 18:243-252. [PMID: 33337940 DOI: 10.1089/fpd.2020.2855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen of global relevance that causes outbreaks and sporadic cases of listeriosis, acquired through the consumption of contaminated products, including milk or meat products and ready-to-eat meat products subjected to intensive handling. The objective of the present study was to classify L. monocytogenes isolated from various food-related sources in the Federal District of Brazil and surrounding areas to sequence internalin A (inlA) genes from these isolates and assess their adhesion and invasion capacity using Caco-2 cells. In addition, 15 were classified as group I, 3 as group II, and 7 classified as group IV. Premature stop codons (PMSCs) at the nucleotide position 976 (GAA→TAA) of the inlA gene were identified in 5 of the 25 isolates. Adhesion and invasion tests in Caco-2 cells showed that all the isolates were capable of adhesion and cellular invasion, with isolates containing PMSCs exhibiting on average higher invasion capacity than those without PMSCs (p = 0.041) and a median of adhesion very distinctive from those without stop codons. These results are the first report of PMSCs in the inlA gene of L. monocytogenes from the Federal District of Brazil and Brazil.
Collapse
Affiliation(s)
- Margareti Medeiros
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Virgilio Hipolito Lemos de Castro
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Ana Lourdes Arrais de Alencar Mota
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | | | | | - Simone Perecmanis
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| | - Angela Patricia Santana
- Food Molecular Microbiology Laboratory, ASS 128/10, Faculty of Agronomy and Veterinary Medicine, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
5
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
6
|
Preventing the Interaction between Coronaviruses Spike Protein and Angiotensin I Converting Enzyme 2: An In Silico Mechanistic Case Study on Emodin as a Potential Model Compound. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Emodin, a widespread natural anthraquinone, has many biological activities including health-protective and adverse effects. Amongst beneficial effects, potential antiviral activity against coronavirus responsible for the severe acute respiratory syndrome outbreak in 2002–2003 has been described associated with the inhibition of the host cells target receptors recognition by the viral Spike protein. However, the inhibition mechanisms have not been fully characterized, hindering the rational use of emodin as a model compound to develop more effective analogues. This work investigates emodin interaction with the Spike protein to provide a mechanistic explanation of such inhibition. A 3D molecular modeling approach consisting of docking simulations, pharmacophoric analysis and molecular dynamics was used. The plausible mechanism is described as an interaction of emodin at the protein–protein interface which destabilizes the viral protein-target receptor complex. This analysis has been extended to the Spike protein of the coronavirus responsible for the current pandemic hypothesizing emodin’s functional conservation. This solid knowledge-based foothold provides a possible mechanistic rationale of the antiviral activity of emodin as a future basis for the potential development of efficient antiviral cognate compounds. Data gaps and future work on emodin-related adverse effects in parallel to its antiviral pharmacology are explored.
Collapse
|