1
|
Polli NLC, Ferreira MEDF, Schluga PHC, Antunes BC, Justa HCD, Theodoro JL, Zazula MF, Naliwaiko K, Minozzo JC, Senff-Ribeiro A, Wille ACM, Veiga SS, Gremski LH. Novel insights into the application of recombinant mutated phospholipases D as antigens for developing new strategies against Loxoscelism. Acta Trop 2024; 258:107354. [PMID: 39106916 DOI: 10.1016/j.actatropica.2024.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Matheus Felipe Zazula
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Katya Naliwaiko
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara, 83302-200, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, 84030-900, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, 81530-900, PR, Brazil.
| |
Collapse
|
2
|
Theodoro JL, da Justa HC, de Caires Schluga PH, Fischer ML, Minozzo JC, Gremski LH, Veiga SS. Subtranscriptome analysis of phospholipases D in Loxosceles venom glands: Confirmation of predominance, intra-species diversity, and description of novel isoforms. Int J Biol Macromol 2024; 280:136108. [PMID: 39343256 DOI: 10.1016/j.ijbiomac.2024.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Spiders of Loxosceles genus, or Brown spiders produce a potent venom with minimal volume and protein content. Among its toxins, phospholipases D (PLDs) are notable for causing primary local and systemic manifestations observed following envenomation. They degrade cellular phospholipids, mainly sphingomyelin and lysophosphatidylcholine. We present a robust and detailed analysis of PLD transcripts from venom glands of three major clinically relevant South American species-L. intermedia, L. laeta, and L. gaucho-using next-generation sequencing. Results confirmed that PLDs are the most highly expressed toxins, accounting for 65.4 % of expression in L. intermedia, 71.8 % in L. gaucho, and 50.4 % in L. laeta. These findings further support the idea that these enzymes form a protein family both within and across species. Eighteen contigs for PLDs were found for L. gaucho, 24 for L. intermedia, and 21 for L. laeta. A detailed analysis revealed that, although all contigs display conserved amino acid residues directly involved in catalysis, magnesium coordination, and substrate affinity, they also possess distinct primary sequences with important substitutions. Such data reinforces the hypothesis that these toxins may act synergistically. Furthermore, new PLD sequences were identified within the contigs. For L. intermedia, 14 potential new isoforms were identified; 16 for L gaucho; and 16 novel sequences for L. laeta. This indicates that there is still a wealth of undisclosed information about these toxins. These data will help identify structural and functional differences among these proteins, support future functional studies, and to the comprehensive understanding of the mechanism of action of PLDs.
Collapse
Affiliation(s)
- João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | | | - Marta Luciane Fischer
- Centro de Ciências Biológicas e da Saúde, Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba 80215-901, PR, Brazil
| | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil.
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil.
| |
Collapse
|
3
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
4
|
Mehr J, Kim J. The use of therapeutic plasma exchange in systemic loxoscelism induced treatment resistant hemolytic anemia: A case report. Transfus Apher Sci 2024; 63:103960. [PMID: 38885577 DOI: 10.1016/j.transci.2024.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Brown recluse spider bites can lead to severe reactions such as skin necrosis,hemolytic anemia, and multiorgan failure, which can be life-threatening. Therapeutic plasma exchange has been reported to provide clinical benefit for such cases. In thisreport, we present a case of a brown recluse spider bite that was successfully treated with therapeutic plasma exchange and compare it with previous case reports.
Collapse
Affiliation(s)
- Joshua Mehr
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jaehyup Kim
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
5
|
Paas A, Dresler J, Talmann L, Vilcinskas A, Lüddecke T. Venom Ex Machina? Exploring the Potential of Cell-Free Protein Production for Venom Biodiscovery. Int J Mol Sci 2024; 25:8286. [PMID: 39125859 PMCID: PMC11311792 DOI: 10.3390/ijms25158286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery.
Collapse
Affiliation(s)
- Anne Paas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Josephine Dresler
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Lea Talmann
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, CH4332 Stein, Switzerland;
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff Ring 26-32, 35392 Gießen, Germany
| | - Tim Lüddecke
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany; (J.D.); (A.V.)
- LOEWE-Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|
6
|
Moreno-Cordova EN, Alvarez-Armenta A, Garcia-Orozco KD, Arvizu-Flores AA, Islas-Osuna MA, Robles-Zepeda RE, Lopez-Zavala AA, Laino A, Sotelo-Mundo RR. Binding of green tea epigallocatechin gallate to the arginine kinase active site from the brown recluse spider ( Loxosceles laeta): A potential synergist to chemical pesticides. Heliyon 2024; 10:e34036. [PMID: 39071691 PMCID: PMC11282998 DOI: 10.1016/j.heliyon.2024.e34036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 μM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.
Collapse
Affiliation(s)
- Elena N. Moreno-Cordova
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Andres Alvarez-Armenta
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Karina D. Garcia-Orozco
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Aldo A. Arvizu-Flores
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Maria A. Islas-Osuna
- Laboratorio de Biología Molecular de Plantas, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| | - Ramon E. Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Alonso A. Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Aldana Laino
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner” (INIBIOLP), Centro Científico Tecnológico – La Plata CONICET- Univerdad Nacional de La Plata, La Plata, Argentina
| | - Rogerio R. Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A. C., Hermosillo, Sonora, Mexico
| |
Collapse
|
7
|
Milani CM, Nocrato HCM, Francio LA, Roskamp L, Mattos NHR. Generalized edema and necrosis of the lower lip. Oral Dis 2024; 30:2763-2765. [PMID: 36932637 DOI: 10.1111/odi.14563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Affiliation(s)
- Cintia Mussi Milani
- Faculty of Dentistry, Universidade Tuiuti do Paraná, Curitiba, Paraná, Brazil
| | | | | | - Liliane Roskamp
- Faculty of Dentistry, Universidade Tuiuti do Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
8
|
Lachmayr H, Merrill AH. A Brief Overview of the Toxic Sphingomyelinase Ds of Brown Recluse Spider Venom and Other Organisms and Simple Methods To Detect Production of Its Signature Cyclic Ceramide Phosphate. Mol Pharmacol 2024; 105:144-154. [PMID: 37739813 PMCID: PMC10877732 DOI: 10.1124/molpharm.123.000709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/05/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023] Open
Abstract
A special category of phospholipase D (PLD) in the venom of the brown recluse spider (Loxosceles reclusa) and several other sicariid spiders accounts for the dermonecrosis and many of the other clinical symptoms of envenomation. Related proteins are produced by other organisms, including fungi and bacteria. These PLDs are often referred to as sphingomyelinase Ds (SMase Ds) because they cleave sphingomyelin (SM) to choline and "ceramide phosphate." The lipid product has actually been found to be a novel sphingolipid: ceramide 1,3-cyclic phosphate (Cer1,3P). Since there are no effective treatments for the injury induced by the bites of these spiders, SMase D/PLDs are attractive targets for therapeutic intervention, and some of their features will be described in this minireview. In addition, two simple methods are described for detecting the characteristic SMase D activity using a fluorescent SM analog, (N-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-SM (C12-NBD-SM), that is cleaved to C12-NBD-Cer1,3P, which is easily separated from other potential metabolites by thin-layer chromatography and visualized under UV light. Besides confirming that C12-NBD-Cer1,3P is the only product detected upon incubation of C12-NBD-SM with brown recluse spider venom, the method was also able to detect for the first time very low levels of activity in venom from another spider, Kukulcania hibernalis The simplicity of the methods makes it relatively easy to determine this signature activity of SMase D/PLD. SIGNIFICANCE STATEMENT: The sphingomyelinase D/phospholipase D that are present in the venom of the brown recluse spider and other sources cause considerable human injury, but detection of the novel sphingolipid product, ceramide 1,3-cyclic phosphate, is not easy by previously published methods. This minireview describes simple methods for detection of this activity that will be useful for studies of its occurrence in spider venoms and other biological samples, perhaps including lesions from suspected spider bites and infections.
Collapse
Affiliation(s)
- Hannah Lachmayr
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Alfred H Merrill
- School of Biological Sciences and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
9
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Silva FAA, Costa GCA, Parizi LF, Silva Vaz Junior ID, Tanaka AS. Biochemical characterization of a novel sphingomyelinase-like protein from the Rhipicephalus microplus tick. Exp Parasitol 2023; 254:108616. [PMID: 37696328 DOI: 10.1016/j.exppara.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.
Collapse
Affiliation(s)
- Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
11
|
de Miranda ALS, Antunes BC, Minozzo JC, Lima SDA, Botelho AFM, Campos MTG, Chávez-Olórtegui C, Soto-Blanco B. The Health Status of Horses Used for at Least Six Complete Cycles of Loxoscelic Antivenom Production. Toxins (Basel) 2023; 15:589. [PMID: 37888620 PMCID: PMC10610985 DOI: 10.3390/toxins15100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Antivenom production against Loxosceles venom relies on horses being immunized and bled for plasma harvest. One horse can partake in several cycles of antivenom production, which will require years of constant venom and adjuvant inoculation and bleeding. The actual impact on the health of horses that participate in several antivenom-producing cycles is unknown. Therefore, this study aimed to evaluate the general health status of horses that underwent at least six cycles of loxoscelic antivenom production. Seven crossbred horses that had partaken in six to eight complete antivenom-producing cycles were used and established as the immunized group (IG). Under the same handling and general management, eleven horses were established as the control group (CG). The horses were evaluated regarding their general clinical status and had their blood sampled, and an ECG recorded. The IG presented lower RBC and PCV, despite keeping values within inferior limits for the species. Renal function was not impaired, and liver-related enzymes were higher than those in the CG, probably due to liver exertion from immunoglobulin synthesis. ECG showed some abnormalities in the IG, such as atrioventricular block and a wandering atrial pacemaker, corroborated by an increase in CK-MB. The cardiovascular abnormalities were mainly found in the horses that participated in several antivenom-producing cycles. The overall results indicate that these horses had some impairment of their general health status. Once available, some alternative, less toxic antigens should replace the venom for immunization of horses used for antivenom production.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Bruno Cesar Antunes
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Rua Piquiri 170, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Ana Flávia Machado Botelho
- Department of Veterinary Medicine, Veterinary College, Universidade Federal de Goiás (UFG), Campus Samambaia, Goiânia 74690-900, GO, Brazil;
| | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Carlos Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.C.-O.)
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| |
Collapse
|
12
|
Alves-Mondini C, Beltramino M, Jiacomini IG, Karim-Silva S, Dos Santos Antunes N, de Moura J, Aubrey N, Billiald P, Machado-de-Ávila RA, Alvarenga LM, Becker-Finco A. Identification of a common epitope in knottins and phospholipases D present in Loxosceles sp venom by a monoclonal antibody. Int J Biol Macromol 2023; 246:125588. [PMID: 37399872 DOI: 10.1016/j.ijbiomac.2023.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
In the Americas and specially in Brazil, the Loxosceles intermedia, Loxosceles gaucho and Loxosceles laeta are the three most medically relevant brown spider species, and whose bites can lead to the condition known as loxoscelism. Here, we report the development of a tool capable of identifying a common epitope amongst Loxosceles sp. venom's toxins. A murine monoclonal antibody (LmAb12) and its recombinant fragments (scFv12P and diabody12P) have been produced and characterized. This antibody and its recombinant constructs were able to recognize proteins of Loxosceles spider venoms with specificity. The scFv12P variant was also able to detect low concentrations of Loxosceles venom in a competitive ELISA assay, displaying potential as a venom identification tool. The primary antigenic target of LmAb12 is a knottin, a venom neurotoxin, that has a shared identity of 100 % between the L. intermedia and L. gaucho species and high similarity to L. laeta. Furthermore, we observed LmAb12 was able to partially inhibit in vitro hemolysis, a cellular event typically induced by the Loxosceles sp. venoms. Such behavior might be due to LmAb12 cross-reactivity between the antigenic target of LmAb12 and the venom's dermonecrotic toxins, the PLDs, or even the existence of synergism between these two toxins.
Collapse
Affiliation(s)
- Camila Alves-Mondini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Martina Beltramino
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Isabella Gizzi Jiacomini
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil; Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Sabrina Karim-Silva
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolle Dos Santos Antunes
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Juliana de Moura
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| | - Nicolas Aubrey
- Université de Tours - INRA, UMR 1282, Faculté de Pharmacie, 31 Avenue Monge, 37200 Tours Cedex, France
| | - Philippe Billiald
- LVTS, INSERM UMR S1148, Paris & Université Paris-Saclay, School of Pharmacy, 91400 Orsay, France
| | - Ricardo Andrez Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Universitário, 88806-000 Criciúma, Santa Catarina, Brazil
| | - Larissa M Alvarenga
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil.
| | - Alessandra Becker-Finco
- Universidade Federal do Paraná, Departamento de Patologia Básica, Laboratório de Imunoquímica, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Fakhar M, Alian S, Soleymani M, Zakariaei A, Nourzad F, Zakariaei Z. Massive dermal ulcerative lesions due to brown recluse spider bite: a rare case report and review of literature. J Int Med Res 2023; 51:3000605231157284. [PMID: 37565672 PMCID: PMC10691315 DOI: 10.1177/03000605231157284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
A brown recluse spider (BRS) bite is challenging to confirm, but may be clinically diagnosed by considering the location, the season of the year, and the clinical manifestations. Here, the case of a 26-year-old male who presented after an insect bite with a skin lesion, bruising, severe swelling, and diffuse blisters on the right lower extremity after three days, is described. Following clinical examination, patient history assessment, and consideration of other relevant factors, the patient received a differential diagnosis of necrotizing fasciitis caused by BRS bite. Although spider bite poisoning is rare, proper diagnosis and management are important because, in some cases, the outcomes may be devastating.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Centre for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahriar Alian
- Antimicrobial Resistance Research Centre, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mostafa Soleymani
- Iranian National Registry Centre for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ashkan Zakariaei
- Student Research Committee, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Nourzad
- Toxicology Ward, Qaemshahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Toxicology and Forensic Medicine Division, Mazandaran Registry Centre for Opioids Poisoning, Antimicrobial Resistance Research Centre, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
da Justa HC, Hernández González JE, Vuitika L, Mariutti RB, Magnago PAM, de Moraes FR, Senff-Ribeiro A, Gremski LH, Arni RK, Veiga SS. Comparative Biochemical, Structural, and Functional Analysis of Recombinant Phospholipases D from Three Loxosceles Spider Venoms. Int J Mol Sci 2023; 24:12006. [PMID: 37569382 PMCID: PMC10419089 DOI: 10.3390/ijms241512006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Spiders of Loxosceles genus are widely distributed and their venoms contain phospholipases D (PLDs), which degrade phospholipids and trigger inflammatory responses, dermonecrosis, hematological changes, and renal injuries. Biochemical, functional, and structural properties of three recombinant PLDs from L. intermedia, L. laeta, and L. gaucho, the principal species clinically relevant in South America, were analyzed. Sera against L. gaucho and L. laeta PLDs strongly cross-reacted with other PLDs, but sera against L. intermedia PLD mostly reacted with homologous molecules, suggesting underlying structural and functional differences. PLDs presented a similar secondary structure profile but distinct melting temperatures. Different methods demonstrated that all PLDs cleave sphingomyelin and lysophosphatidylcholine, but L. gaucho and L. laeta PLDs excelled. L. gaucho PLD showed greater "in vitro" hemolytic activity. L. gaucho and L. laeta PLDs were more lethal in assays with mice and crickets. Molecular dynamics simulations correlated their biochemical activities with differences in sequences and conformations of specific surface loops, which play roles in protein stability and in modulating interactions with the membrane. Despite the high similarity, PLDs from L. gaucho and L. laeta venoms are more active than L. intermedia PLD, requiring special attention from physicians when these two species prevail in endemic regions.
Collapse
Affiliation(s)
- Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Jorge Enrique Hernández González
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Larissa Vuitika
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (ICB-IV/USP), São Paulo 05508-000, Brazil
| | - Ricardo Barros Mariutti
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Pedro Augusto Martinho Magnago
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Fábio Rogério de Moraes
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| | - Raghuvir Krishnaswamy Arni
- Department of Physics, Multi-User Center for Biomolecular Innovation, State University of São Paulo (UNESP), São Paulo 05315-970, Brazil; (J.E.H.G.); (R.B.M.); (F.R.d.M.); (R.K.A.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (H.C.d.J.); (L.V.); (P.A.M.M.); (A.S.-R.); (L.H.G.)
| |
Collapse
|
15
|
Fakhar M, Alian S, Zakariaei A, Nourzad F, Zakariaei Z. Massive dermal ulcerative lesions because of brown recluse spider bite: a rare case report and review of literature. J Surg Case Rep 2023; 2023:rjad357. [PMID: 37360745 PMCID: PMC10284676 DOI: 10.1093/jscr/rjad357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
A brown recluse spider (BRS) bite is challenging to confirm, but can be clinically diagnosed by considering the location, the season of the year and the clinical manifestations. We described a 26-year-old male who presented after a BRS bite with a skin lesion, bruising, severe swelling and diffuse blisters on the right lower extremity after 3 days. This case should be considered in the differential diagnosis of necrotizing fasciitis. Although spider bite poisoning is rare, proper diagnosis and management are important because, in some cases, it can have devastating outcomes.
Collapse
Affiliation(s)
- Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahriar Alian
- Antimicrobial Resistance Research Center, Department of Infectious Diseases, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ashkan Zakariaei
- Student Research Committee, Babol Branch, Islamic Azad University, Babol, Iran
| | - Fatemeh Nourzad
- Toxicology Ward, Qaemshahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakaria Zakariaei
- Correspondence address. Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning, Antimicrobial Resistance Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, PO Box 48166-33131, Sari, Iran. Tel/Fax: 981133357916; E-mail:
| |
Collapse
|
16
|
Peres-Damásio P, Silva-Magalhães R, Silva-Araújo AL, Pereira EHT, Silveira AL, Varella LSDRN, Borges MH, Chavez-Olórtegui C, Paiva ALB, Guerra-Duarte C. Partial characterization of Loxosceles anomala (Mello-Leitão, 1917) venom: A brown spider of potential medical concern. Toxicon 2023; 228:107107. [PMID: 37011787 DOI: 10.1016/j.toxicon.2023.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
The spider's genus Loxosceles (also known as "brown spiders") is one of the few ones of medical importance in Brazil, being Loxosceles anomala a species of common occurrence in the Southeast region. This species is usually smaller in size than the other members of the Loxosceles group. A single human accident involving L. anomala was reported to date and the clinical picture shared similar characteristics with accidents caused by other Loxosceles species. Despite the potential relevance of L. anomalafor loxocelism in Minas Gerais state, its venom activity has never been characterized. In this work, we provide a preliminary characterization of L. anomala venom, considering its most relevant enzymatic activities and its venom immunorecognition by current therapeutic antivenoms. The results showed that L. anomala venom is immunorecognised by therapeutic antivenoms and by anti-phospholipase D antibodies. Its venom also shows enzymatic activities (sphingomyelinase activity, fibrinogenolytic) described for other Loxosceles venoms. This work contributes to a better knowledge on the venom content and activities of synanthropic Loxosceles species that have the potential of causing relevant human accidents.
Collapse
Affiliation(s)
- Pamella Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | | | | | | | - Márcia Helena Borges
- Arachnid Proteomics Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Carlos Chavez-Olórtegui
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation - FUNED, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Cunha LC, Barreto LP, Valadares VS, Oliveira CFB, Vuitika L, Vilela MP, Cino EA, Silva AHDM, Nagem RAP, Chávez-Olórtegui C, Dias-Lopes C, Molina F, Felicori L. The C-terminal mutation beyond the catalytic site of brown spider phospholipase D significantly impacts its biological activities. Biochimie 2023; 211:122-130. [PMID: 36963559 DOI: 10.1016/j.biochi.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with β-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.
Collapse
Affiliation(s)
- Laís Cardoso Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Passos Barreto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Veronica Silva Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Franco Batista Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (ICB-IV/USP), São Paulo, Brazil
| | - Maura Páscoa Vilela
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Dias-Lopes
- Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 Rue de La Valsière, 34184, Montpellier, France
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Cain S, Plapp FV, Dasgupta A, Ye Z. Severe complications in a 25-year-old male after brown recluse spider bite treated by therapeutic plasma exchange: A case report and review of other case studies. J Clin Apher 2023. [PMID: 36876877 DOI: 10.1002/jca.22045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023]
Abstract
Although in the majority of patients (90%), the bite wound of brown recluse spider resolves spontaneously, some patients may experience a severe reaction requiring hospitalization. A 25-year-old male developed severe hemolytic anemia, jaundice, and other complications following a brown recluse spider bite on his posterior right thigh. He was treated with methylprednisolone, antibiotics, and red blood cells (RBCs) transfusion without response. Therapeutic plasma exchange (TPE) was added to the treatment regimen, and his hemoglobin (Hb) was eventually stabilized, leading to significant clinical improvement. The beneficial effect of TPE in the current case was compared to three other reported cases. We recommend close monitoring of Hb levels in patients with systemic loxoscelism during the first week after brown recluse spider bite and early implementation of TPE in the management of severe acute hemolysis when patients do not respond to usual treatment modalities and RBC transfusion.
Collapse
Affiliation(s)
- Sarah Cain
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Frederick V Plapp
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
19
|
Production and Functional Evaluation of Anti- Loxosceles Sera Raised by Immunizations of Rabbits with Mutated Recombinant Phospholipases-D. Biomedicines 2022; 11:biomedicines11010079. [PMID: 36672587 PMCID: PMC9856178 DOI: 10.3390/biomedicines11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 12/30/2022] Open
Abstract
Loxoscelism is the clinical condition triggered after the bite of spiders of the genus Loxosceles. The main species involved in accidents in South America are L. intermedia, L. laeta, and L. gaucho. The only specific treatment is the anti-Loxosceles serum produced with crude venoms. As phospholipases D (PLDs) trigger most of the effects observed in accidents, we developed and evaluated second-generation sera using mutated PLDs as antigens. Three isoforms of PLDs with site-directed mutations without biological activities were used for rabbit immunizations: D32A-E34A (L. gaucho), W230A (L. intermedia), and H12A-H47A (L. laeta). Sera were produced using crude venoms of three species of Loxosceles enriched with mutated recombinant PLDs (MIX) or using only mutated PLDs (REC). Immunizations stimulated the immune system from the second immunization with higher antibody production in the REC group. In vivo neutralization assays demonstrated that both sera reduced edema and dermonecrosis caused by Loxosceles intermedia crude venom. Follow-up of animals during the immunization protocols and in the neutralization assays demonstrated that the mutated proteins and the sera are safe. Results demonstrate the potential of using mutated recombinant PLDs in total or partial replacement of Loxosceles venoms in animal immunizations to produce anti-Loxosceles sera for treatments of Loxoscelism.
Collapse
|
20
|
Gremski LH, da Justa HC, Polli NLC, Schluga PHDC, Theodoro JL, Wille ACM, Senff-Ribeiro A, Veiga SS. Systemic Loxoscelism, Less Frequent but More Deadly: The Involvement of Phospholipases D in the Pathophysiology of Envenomation. Toxins (Basel) 2022; 15:17. [PMID: 36668837 PMCID: PMC9864854 DOI: 10.3390/toxins15010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2022] Open
Abstract
Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | | | | | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| |
Collapse
|
21
|
de Miranda ALS, Lima SDA, Botelho AFM, Gomes Campos MT, Eckstein C, Minozzo JC, Chávez-Olórtegui CD, Soto-Blanco B. Protective Effectiveness of an Immunization Protocol Against the Toxic Effects of Loxosceles intermedia Venom in Rabbits. Front Vet Sci 2022; 9:852917. [PMID: 35711800 PMCID: PMC9195175 DOI: 10.3389/fvets.2022.852917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Loxosceles spp. (brown spiders) bites are responsible for the development of a syndrome consisting mainly of dermonecrotic lesions, and also systemic effects. Rabbits are one of the main experimental models used for better understanding the systemic and local effects of Loxosceles venom. The aim of this study is to evaluate the toxic and protective effects of rabbits immunized with Loxosceles spp. venom. Male New Zealand rabbits were allocated as a control group (CG; n = 5) that received adjuvant (Montanide) and phosphate-buffer saline (PBS), or as venom group (VG; n = 5) that received 21 μg of Loxosceles venom using Montanide as adjuvant. After five immunization cycles, a trial with 7 μg of Loxosceles intermedia (L. intermedia) venom was performed, and dermonecrotic lesions were measured. The rabbits were then euthanized, and their organs were collected for histopathology analysis. Rabbits that had undergone Loxosceles venom immunization protocol showed minor clinical disturbances during the experimental period. The used immunization protocol protected the rabbits against the toxic effect of the Loxosceles venom because they showed minor clinical disturbances during the experimental period.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Camila Eckstein
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Production and Research Center of Immunobiologicals, Piraquara, Brazil
| | - Carlos Delfin Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Benito Soto-Blanco
| |
Collapse
|
22
|
de Miranda ALS, Antunes BC, Minozzo JC, Lima SDA, Botelho AFM, Campos MTG, Chávez-Olórtegui CD, Soto-Blanco B. Clinical Effects of the Immunization Protocol Using Loxosceles Venom in Naïve Horses. Toxins (Basel) 2022; 14:338. [PMID: 35622586 PMCID: PMC9148105 DOI: 10.3390/toxins14050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
Bites of brown spiders (Loxosceles spp.) are responsible for dermonecrotic lesions and potentially systemic envenoming that can lead to death. The only effective therapy is the use of the antivenom, usually produced in horses. However, little is known about the consequences of the systematic use of the Loxosceles venom and adjuvants and of the bleedings on antivenom-producing horses. Thus, the aim of this study was to evaluate the clinical changes in horses in their first immunization protocol for Loxosceles antivenom production. Eleven healthy horses, never immunized, were evaluated in three different periods: T0 (before immunization); T1 (after their first venom immunization); and T2 (after their first bleeding). Horses were clinically evaluated, sampled for blood, and underwent electrocardiographic (ECG) recordings. Several suppurated subcutaneous abscesses occurred due to the use of Freund's adjuvants and thrombophlebitis due to systematic venipunctures for the bleeding procedures. ECG showed arrhythmias in few horses in T2, such as an increase in T and R waves. In summary, the immunization protocol impacted on horses' health, especially after bleeding for antivenom procurement.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Bruno Cesar Antunes
- Department of Health of the State of Paraná, Production and Research Center of Immunobiologicals, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - João Carlos Minozzo
- Department of Health of the State of Paraná, Production and Research Center of Immunobiologicals, Piraquara 80230-140, PR, Brazil; (B.C.A.); (J.C.M.)
| | - Sabrina de Almeida Lima
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.D.C.-O.)
| | - Ana Flávia Machado Botelho
- Department of Veterinary Medicine, Veterinary College, Federal University of Goiás, Campus Samambaia, Goiânia 74690-900, GO, Brazil;
| | - Marco Túlio Gomes Campos
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| | - Carlos Delfin Chávez-Olórtegui
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (S.d.A.L.); (C.D.C.-O.)
| | - Benito Soto-Blanco
- Department of Veterinary Clinics and Surgery, Veterinary College, Federal University of Minas Gerais, Belo Horizonte 30123-970, MG, Brazil; (A.L.S.d.M.); (M.T.G.C.)
| |
Collapse
|
23
|
Jacobs JW, Bastarache L, Thompson MA. Laboratory Predictors of Hemolytic Anemia in Patients With Systemic Loxoscelism. Am J Clin Pathol 2022; 157:566-572. [PMID: 34643670 DOI: 10.1093/ajcp/aqab169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To develop a sensitive and specific protocol for detecting preclinical hemolysis in patients with brown recluse spider (BRS) bites by comparing a large cohort of individuals with brown recluse spider (BRS) bites with and without hemolytic anemia. METHODS A cross-sectional, retrospective analysis of clinical features and laboratory values, including urinalysis (UA) and peripheral blood results, and timing of positive laboratory values prior to a significant drop in hematocrit was performed to evaluate effective predictors of clinically significant hemolysis. RESULTS In total, 275 patients with BRS bites were identified (64 with hemolytic anemia). Sensitivity and specificity of UA positive for blood (with and without microscopic hematuria) for detecting hemolysis were 72% and 75%, respectively. The combination of elevated serum total bilirubin (TB) and lactate dehydrogenase (LDH) had greater sensitivity (94%) and specificity (91%) for detecting patients developing hemolysis. When TB and LDH were evaluated prior to a significant decrease in hematocrit, they were positive in 82% of cases, while UA was positive for blood prior to a hematocrit decrease in 38% of cases. CONCLUSIONS Serum TB and LDH levels are more effective at detecting preclinical hemolysis than UA and should be serially analyzed to triage patients with BRS bites before life-threatening hemolysis occurs.
Collapse
Affiliation(s)
- Jeremy W Jacobs
- Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson
- Department of Pathology, Microbiology, and Immunology, Nashville, TN, USA
| |
Collapse
|
24
|
The Enzymatic Core of Scorpion Venoms. Toxins (Basel) 2022; 14:toxins14040248. [PMID: 35448857 PMCID: PMC9030722 DOI: 10.3390/toxins14040248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/11/2022] Open
Abstract
Enzymes are an integral part of animal venoms. Unlike snakes, in which enzymes play a primary role in envenomation, in scorpions, their function appears to be ancillary in most species. Due to this, studies on the diversity of scorpion venom components have focused primarily on the peptides responsible for envenomation (toxins) and a few others (e.g., antimicrobials), while enzymes have been overlooked. In this work, a comprehensive study on enzyme diversity in scorpion venoms was performed by transcriptomic and proteomic techniques. Enzymes of 63 different EC types were found, belonging to 330 orthogroups. Of them, 24 ECs conform the scorpion venom enzymatic core, since they were determined to be present in all the studied scorpion species. Transferases and lyases are reported for the first time. Novel enzymes, which can play different roles in the venom, including direct toxicity, as venom spreading factors, activators of venom components, venom preservatives, or in prey pre-digestion, were described and annotated. The expression profile for transcripts coding for venom enzymes was analyzed, and shown to be similar among the studied species, while being significantly different from their expression pattern outside the telson.
Collapse
|
25
|
Ferreira MD, Veiga SS, Dos Santos FA. Brown spider (Loxosceles sp.) bite and COVID-19: A case report. Toxicon 2022; 212:1-7. [PMID: 35346694 PMCID: PMC8957330 DOI: 10.1016/j.toxicon.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
We present the case of a 32-year-old male patient hospitalized during the COVID-19 pandemic because of a Brown spider bite on his lower lip. The Brown spider accident occurred in southern Brazil; at hospital admission, the patient presented on his lip: edema, pustules, necrotic regions, and ulcerations. The patient complained of lower back pain, fever and dyspnea. Laboratory tests showed monocytosis, leukocytosis, neutrophilia, increased D-dimer levels, C-reactive protein, glutamate-pyruvate transaminase, delta bilirubin, creatine phosphokinase, procalcitonin, and fibrinogen. The patient was hospitalized and a multi-professional team carried out the treatment. The medical team diagnosed loxoscelism with moderate changes. The dentist treated the oral cavity. The patient began to develop nausea, vomiting, and desaturation episodes during hospitalization. A computed tomography of the chest was performed, which showed signs of viral infection. The RT-PCR test for COVID-19 was positive. The systemic conditions worsened (renal dysfunction, systemic inflammatory response, pulmonary complications). This condition may have resulted from the association of the two diseases (loxoscelism and COVID-19), leading to the patient's death. This case illustrates the difficulties and risks in treating patients with venomous animal accidents during the pandemic, and the importance of a multi-professional team in treating such cases.
Collapse
Affiliation(s)
- Marceli Dias Ferreira
- Department of Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Fábio André Dos Santos
- Department of Dentistry, School of Dentistry, State University of Ponta Grossa, Ponta Grossa, PR, Brazil.
| |
Collapse
|
26
|
Truong TV, Gruenberg B, Ciener DA, Butchee R. Hives and Fever in a 13-year-old Boy. Pediatr Rev 2022; 43:49-53. [PMID: 34970693 DOI: 10.1542/pir.2020-003848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Thang V Truong
- The Children's Hospital at OU Medical Center, Oklahoma City, OK.,University of Iowa Hospitals and Clinics, Iowa City, IA
| | | | | | - Ryan Butchee
- The Children's Hospital at OU Medical Center, Oklahoma City, OK
| |
Collapse
|
27
|
A protective vaccine against the toxic activities following Brown spider accidents based on recombinant mutated phospholipases D as antigens. Int J Biol Macromol 2021; 192:757-770. [PMID: 34634338 DOI: 10.1016/j.ijbiomac.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.
Collapse
|
28
|
Combi F, Papi S, Marchesini D, Andreotti A, Gambini A, Palma E, Tazzioli G. Uncommon differential diagnosis of a breast ulcer: a case study. J Wound Care 2021; 30:XIIi-XIIiv. [PMID: 34597171 DOI: 10.12968/jowc.2021.30.sup9a.xii] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Spider bites are common worldwide. Frequently symptoms resolve without any adverse outcome, but in rare cases the bite can cause severe morbidity. The most typical presentation of Mediterranean recluse spider (Loxosceles Rufescens) bite is a dermatonecrotic lesion of the skin (skin loxoscelism). When the only manifestation of a spider bite is an ulcerated skin lesion, clinical suspicion and differential diagnosis strongly depend on its site. We present the case of an ulcerated wound of the breast, diagnosed as a Mediterranean recluse spider bite. CASE PRESENTATION A 79-year-old woman presented a 10cm-wide soft tissue ulceration of her left breast. At first, the diagnostic hypothesis of an ulcerated cancer was ruled out. Two family members revealed a recent history of Mediterranean recluse spider bite and the same clinical diagnosis was made for our patient. A wide excision was performed, with complete resolution of symptoms. DISCUSSION No specific diagnostic criteria for spider bites are available. Diagnosis is usually clinical. Skin loxoscelism could be easily mistaken for cellulitis, various types of skin infections, cutaneous anthrax, vasculitis, scorpion sting, pyoderma gangrenosum, erythema migrans of Lyme disease or prurigo nodularis. A thorough anamnestic interview is fundamental to raise the diagnostic hypothesis. When possible, a biopsy is recommended and it is extremely important when the ulcer can mimic a cancer, as is the case in breast tissue. CONCLUSION We recommend a wide excision of the wound after failure of conservative treatment, in order to obtain local control and to perform histological examination on a more representative specimen.
Collapse
Affiliation(s)
- Francesca Combi
- hD Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Italy.,Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| | - Simona Papi
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| | - Denise Marchesini
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy.,General Surgery Residency Program, University of Modena and Reggio Emilia, Italy
| | - Alessia Andreotti
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| | - Anna Gambini
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| | - Enza Palma
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| | - Giovanni Tazzioli
- Division of Breast Surgical Oncology, Department of Medical and Surgical, Maternal-Infantile and Adult Sciences, University Hospital of Modena, Italy
| |
Collapse
|
29
|
Abdelazeem B, Eurick-Bering K, Ayad S, Malik B, Kalynych Z. A Case Report of Brown Recluse Spider Bite. Cureus 2021; 13:e16663. [PMID: 34458049 PMCID: PMC8384389 DOI: 10.7759/cureus.16663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Brown recluse spider is a spider of the genus Loxosceles and also known as violin spider or fiddle-back spider. Brown recluse spider is characterized by having six eyes, with a pair in front, a pair on both sides, and a gap between the pairs. The other spiders have eight eyes in two rows of four. Brown recluse spider bites are challenging to verify but may be clinically diagnosed with consideration of geographic location, seasonality, and clinical characteristics. We present a case that involves a brown recluse spider bite in a 59-year-old female with malnutrition and polysubstance use who developed systemic symptoms and a dermonecrotic wound. Local wound care and intravenous (IV) antibiotics lead to clinical improvement by hospital day three, at which time the patient left against medical advice. The case highlights the challenges of diagnosing a brown recluse spider bites, particularly in a patient with multiple risk factors for necrotizing soft tissue infection. Furthermore, the present case represents one of the few case reports of a brown recluse spider bite in Michigan.
Collapse
Affiliation(s)
- Basel Abdelazeem
- Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, USA
| | - Kianna Eurick-Bering
- Internal Medicine, Michigan State University College of Human Medicine, Flint, USA
| | - Sarah Ayad
- Internal Medicine, Rutgers New Jersey Medical School/Trinitas Regional Medical Center, Elizabeth, USA
| | - Bilal Malik
- Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, USA
| | - Zirka Kalynych
- Internal Medicine, McLaren Health Care, Flint/Michigan State University, Flint, USA
| |
Collapse
|
30
|
Alvarenga LM, Cardenas GAC, Jiacomini IG, Ramírez MI. A new insight into the cellular mechanisms of envenomation: Elucidating the role of extracellular vesicles in Loxoscelism. Toxicol Lett 2021; 350:202-212. [PMID: 34314803 DOI: 10.1016/j.toxlet.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023]
Abstract
Envenomation by the Loxosceles genus spiders is a recurring health issue worldwide and specially in the Americas. The physiopathology of the envenomation is tightly associated to the venom's rich toxin composition, able to produce a local dermonecrotic lesion that can evolve systemically and if worsened, might result in multiple organ failure and lethality. The cellular and molecular mechanisms involved with the physiopathology of Loxoscelism are not completely understood, however, the venom's Phospholipases D (PLDs) are known to trigger membrane injury in various cell types. Here, we report for the first time the Loxosceles venom's ability to stimulate the production of extracellular vesicles (EVs) in various human cell lineages. Components of the Loxosceles venom were also detectable in the cargo of these vesicles, suggesting that they may be implicated in the process of extracellular venom release. EVs from venom treated cells exhibited phospholipase D activity and were able to induce in vitro hemolysis in human red blood cells and alter the HEK cell membranes' permeability. Nonetheless, the PLD activity was inhibited when an anti-venom PLDs monoclonal antibody was co-administered with the whole venom. In summary, our findings shed new light on the mechanisms underlying cellular events in the context of loxoscelism and suggest a crucial role of EVs in the process of envenomation.
Collapse
Affiliation(s)
- Larissa Magalhães Alvarenga
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcel Ivan Ramírez
- EVAHPI - Extracellular Vesicles and Host-Parasite Interactions Research Group Laboratório de Biologia Molecular e Sistemática de Tripanossomatideos, Instituto Carlos Chagas-Fiocruz, Curitiba, PR, Brazil
| |
Collapse
|
31
|
Gremski LH, Matsubara FH, da Justa HC, Schemczssen-Graeff Z, Baldissera AB, Schluga PHDC, Leite IDO, Boia-Ferreira M, Wille ACM, Senff-Ribeiro A, Veiga SS. Brown spider venom toxins: what are the functions of astacins, serine proteases, hyaluronidases, allergens, TCTP, serpins and knottins? J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200188. [PMID: 34377142 PMCID: PMC8314928 DOI: 10.1590/1678-9199-jvatitd-2020-0188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/09/2021] [Indexed: 12/27/2022] Open
Abstract
Accidents caused by the bites of brown spiders (Loxosceles) generate a clinical condition that often includes a threatening necrotic skin lesion near the bite site along with a remarkable inflammatory response. Systemic disorders such as hemolysis, thrombocytopenia, and acute renal failure may occur, but are much less frequent than the local damage. It is already known that phospholipases D, highly expressed toxins in Loxosceles venom, can induce most of these injuries. However, this spider venom has a great range of toxins that probably act synergistically to enhance toxicity. The other protein classes remain poorly explored due to the difficulty in obtaining sufficient amounts of them for a thorough investigation. They include astacins (metalloproteases), serine proteases, knottins, translationally controlled tumor proteins (TCTP), hyaluronidases, allergens and serpins. It has already been shown that some of them, according to their characteristics, may participate to some extent in the development of loxoscelism. In addition, all of these toxins present potential application in several areas. The present review article summarizes information regarding some functional aspects of the protein classes listed above, discusses the directions that could be taken to materialize a comprehensive investigation on each of these toxins as well as highlights the importance of exploring the full venom repertoire.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | - Ana Carolina Martins Wille
- Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
32
|
Gremski LH, Matsubara FH, Polli NLC, Antunes BC, Schluga PHDC, da Justa HC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Veiga SS. Prospective Use of Brown Spider Venom Toxins as Therapeutic and Biotechnological Inputs. Front Mol Biosci 2021; 8:706704. [PMID: 34222343 PMCID: PMC8247472 DOI: 10.3389/fmolb.2021.706704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Brown spider (genus Loxosceles) venoms are mainly composed of protein toxins used for predation and defense. Bites of these spiders most commonly produce a local dermonecrotic lesion with gravitational spread, edema and hemorrhage, which together are defined as cutaneous loxoscelism. Systemic loxoscelism, such as hematological abnormalities and renal injury, are less frequent but more lethal. Some Loxosceles venom toxins have already been isolated and extensively studied, such as phospholipases D (PLDs), which have been recombinantly expressed and were proven to reproduce toxic activities associated to the whole venom. PLDs have a notable potential to be engineered and converted in non-toxic antigens to produce a new generation of antivenoms or vaccines. PLDs also can serve as tools to discover inhibitors to be used as therapeutic agents. Other Loxosceles toxins have been identified and functionally characterized, such as hyaluronidases, allergen factor, serpin, TCTP and knottins (ICK peptides). All these toxins were produced as recombinant molecules and are biologically active molecules that can be used as tools for the potential development of chemical candidates to tackle many medical and biological threats, acting, for instance, as antitumoral, insecticides, analgesic, antigens for allergy tests and biochemical reagents for cell studies. In addition, these recombinant toxins may be useful to develop a rational therapy for loxoscelism. This review summarizes the main candidates for the development of drugs and biotechnological inputs that have been described in Brown spider venoms.
Collapse
Affiliation(s)
| | | | | | - Bruno Cesar Antunes
- Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil.,Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | | | | | - João Carlos Minozzo
- Production and Research Center of Immunobiological Products, State Department of Health, Piraquara, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa, Ponta Grossa, Brazil
| | | | | |
Collapse
|
33
|
Drug Development Using Natural Toxins. Toxins (Basel) 2021; 13:toxins13060414. [PMID: 34207953 PMCID: PMC8230678 DOI: 10.3390/toxins13060414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/23/2022] Open
|
34
|
Schemczssen-Graeff Z, Justa HCD, Nowatzki J, Baldissera AB, Polli NLC, De-Bona E, Rossi IV, Ramirez MI, Minozzo JC, Matsubara FH, Senff-Ribeiro A, Gremski LH, Veiga SS. Description of a serpin toxin in Loxosceles (Brown spider) venoms: Cloning, expression in baculovirus-infected insect cells and functional characterization. Int J Biol Macromol 2021; 183:1607-1620. [PMID: 34029585 DOI: 10.1016/j.ijbiomac.2021.05.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Several classes of toxins are present in the venom of Brown spiders (Loxosceles genus), some of them are highly expressed and others are less expressed. In this work, we aimed to clone the sequence of a little expressed novel toxin from Loxosceles venom identified as a serine protease inhibitor (serpin), as well as to express and characterize its biochemical and biological properties. It was named LSPILT, derived from Loxoscelesserine protease inhibitor-like toxin. Multiple alignment analysis revealed high identity between LSPILT and other serpin molecules from spiders and crab. LSPILT was produced in baculovirus-infected insect cells, resulting in a 46-kDa protein fused to a His-tag. Immunological assays showed epitopes in LSPILT that resemble native venom toxins of Loxosceles spiders. The inhibitory activity of LSPILT on trypsin was found both by reverse zymography and fluorescent gelatin-degradation assay. Additionally, LSPILT inhibited the complement-dependent lysis of Trypanosoma cruzi epimastigotes, reduced thrombin-dependent clotting and suppressed B16-F10 melanoma cells migration. Results described herein prove the existence of conserved serpin-like toxins in Loxosceles venoms. The availability of a recombinant serpin enabled the determination of its biological and biochemical properties and indicates potential applications in future studies regarding the pathophysiology of the envenoming or for biotechnological purposes.
Collapse
Affiliation(s)
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Jenifer Nowatzki
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | | | | | - Elidiana De-Bona
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Izadora Volpato Rossi
- Department of Biochemistry, Federal University of Paraná, (UFPR), Curitiba 81530-900, PR, Brazil
| | - Marcel Ivan Ramirez
- Department of Biochemistry, Federal University of Paraná, (UFPR), Curitiba 81530-900, PR, Brazil; Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - João Carlos Minozzo
- Center for Production and Research of Immunobiological Products (CPPI), State Department of Health, Piraquara 83302-200, PR, Brazil
| | | | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil.
| |
Collapse
|
35
|
Brown Spiders' Phospholipases-D with Potential Therapeutic Applications: Functional Assessment of Mutant Isoforms. Biomedicines 2021; 9:biomedicines9030320. [PMID: 33801128 PMCID: PMC8004160 DOI: 10.3390/biomedicines9030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.
Collapse
|
36
|
New Insectotoxin from Tibellus Oblongus Spider Venom Presents Novel Adaptation of ICK Fold. Toxins (Basel) 2021; 13:toxins13010029. [PMID: 33406803 PMCID: PMC7824768 DOI: 10.3390/toxins13010029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
The Tibellus oblongus spider is an active predator that does not spin webs and remains poorly investigated in terms of venom composition. Here, we present a new toxin, named Tbo-IT2, predicted by cDNA analysis of venom glands transcriptome. The presence of Tbo-IT2 in the venom was confirmed by proteomic analyses using the LC-MS and MS/MS techniques. The distinctive features of Tbo-IT2 are the low similarity of primary structure with known animal toxins and the unusual motif of 10 cysteine residues distribution. Recombinant Tbo-IT2 (rTbo-IT2), produced in E. coli using the thioredoxin fusion protein strategy, was structurally and functionally studied. rTbo-IT2 showed insecticidal activity on larvae of the housefly Musca domestica (LD100 200 μg/g) and no activity on the panel of expressed neuronal receptors and ion channels. The spatial structure of the peptide was determined in a water solution by NMR spectroscopy. The Tbo-IT2 structure is a new example of evolutionary adaptation of a well-known inhibitor cystine knot (ICK) fold to 5 disulfide bonds configuration, which determines additional conformational stability and gives opportunities for insectotoxicity and probably some other interesting features.
Collapse
|
37
|
Arán-Sekul T, Perčić-Sarmiento I, Valencia V, Olivero N, Rojas JM, Araya JE, Taucare-Ríos A, Catalán A. Toxicological Characterization and Phospholipase D Activity of the Venom of the Spider Sicarius thomisoides. Toxins (Basel) 2020; 12:E702. [PMID: 33171968 PMCID: PMC7694614 DOI: 10.3390/toxins12110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Envenomation by Loxosceles spiders (Sicariidae family) has been thoroughly documented. However, little is known about the potential toxicity of members from the Sicarius genus. Only the venom of the Brazilian Sicarius ornatus spider has been toxicologically characterized. In Chile, the Sicarius thomisoides species is widely distributed in desert and semidesert environments, and it is not considered a dangerous spider for humans. This study aimed to characterize the potential toxicity of the Chilean S. thomisoides spider. To do so, specimens of S. thomisoides were captured in the Atacama Desert, the venom was extracted, and the protein concentration was determined. Additionally, the venoms were analyzed by electrophoresis and Western blotting using anti-recombinant L. laeta PLD1 serum. Phospholipase D enzymatic activity was assessed, and the hemolytic and cytotoxic effects were evaluated and compared with those of the L. laeta venom. The S. thomisoides venom was able to hydrolyze sphingomyelin as well as induce complement-dependent hemolysis and the loss of viability of skin fibroblasts with a dermonecrotic effect of the venom in rabbits. The venom of S. thomisoides showed intraspecific variations, with a similar protein pattern as that of L. laeta venom at 32-35 kDa, recognized by serum anti-LlPLD1. In this context, we can conclude that the venom of Sicarius thomisoides is similar to Loxosceles laeta in many aspects, and the dermonecrotic toxin present in their venom could cause severe harm to humans; thus, precautions are necessary to avoid exposure to their bite.
Collapse
Affiliation(s)
- Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Ivanka Perčić-Sarmiento
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Verónica Valencia
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Nelly Olivero
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - José M. Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Jorge E. Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Andrés Taucare-Ríos
- Facultad de Ciencias, Universidad Arturo Prat, Iquique 1110939, Chile;
- Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Iquique 1110939, Chile
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| |
Collapse
|
38
|
Loxoscelism: Advances and Challenges in the Design of Antibody Fragments with Therapeutic Potential. Toxins (Basel) 2020; 12:toxins12040256. [PMID: 32316084 PMCID: PMC7232456 DOI: 10.3390/toxins12040256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Envenoming due to Loxosceles spider bites still remains a neglected disease of particular medical concern in the Americas. To date, there is no consensus for the treatment of envenomed patients, yet horse polyclonal antivenoms are usually infused to patients with identified severe medical conditions. It is widely known that venom proteins in the 30–35 kDa range with sphingomyelinase D (SMasesD) activity, reproduce most of the toxic effects observed in loxoscelism. Hence, we believe that monoclonal antibody fragments targeting such toxins might pose an alternative safe and effective treatment. In the present study, starting from the monoclonal antibody LimAb7, previously shown to target SMasesD from the venom of L. intermedia and neutralize its dermonecrotic activity, we designed humanized antibody V-domains, then produced and purified as recombinant single-chain antibody fragments (scFvs). These molecules were characterized in terms of humanness, structural stability, antigen-binding activity, and venom-neutralizing potential. Throughout this process, we identified some blocking points that can impact the Abs antigen-binding activity and neutralizing capacity. In silico analysis of the antigen/antibody amino acid interactions also contributed to a better understanding of the antibody’s neutralization mechanism and led to reformatting the humanized antibody fragment which, ultimately, recovered the functional characteristics for efficient in vitro venom neutralization.
Collapse
|