1
|
Bouteiller P, Biré R, Foss AJ, Guérin T, Lance E. Analysis of total microcystins by Lemieux oxidation and liquid chromatography-mass spectrometry in fish and mussels tissues: Optimization and comparison of protocols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175339. [PMID: 39117191 DOI: 10.1016/j.scitotenv.2024.175339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microcystins (MCs) can be detected in various matrices in two forms: a freely extractable fraction and a total (free and covalently protein-bound) fraction. Although the majority of MCs analyses are limited to the free fraction, they do not allow the analysis of all MCs variants or protein-bound forms. Other methods, known as total MCs analysis methods, enable simultaneous analysis of all MCs variants, as well as bound forms, which may be a major form of toxin accumulation in organisms. Among these techniques, the chemical oxidation method (e.g. Lemieux) allows the detection of total forms of MC (and nodularins) by oxidizing the common part to all MC and nodularins, and analyzing the resultant MMPB product (2-methyl-3-methoxy-4-phenylbutyric acid). However, the execution of this method in the context of health monitoring is challenging due to the variability of the protocols, the recoveries obtained with these protocols, and the important matrix effects associated with the method. The objectives of this study were i) to optimize an existing protocol of chemical oxidation "Lemieux1" on fresh fish fillet matrices, ii) to compare two existing protocols ("Lemieux1" and "Lemieux2"), and iii) apply Lemieux oxidation to fish fillets and livers naturally contaminated with MCs-producing cyanobacteria and to freshwater mussels contaminated with MCs in laboratories. Optimization of the "Lemieux1" protocol, in particular in the oxidation and SPE (solid phase extraction) steps improved the method's yields on the fresh fish fillet matrix (from <5 % to around 40 %). Moreover, several quantification methods have been compared through various calibration techniques (solvent calibration curve, matrix-matched calibration curve, oxidized MC-LR calibration curve and also by testing the addition of d3-MMPB as an internal standard). Comparison with the "Lemieux2" protocol showed the best results on the same matrix, with yields of around 65 %. MMPB was analyzed using this "Lemieux 2" protocol, in livers of carps sampled during an episode of cyanobacteria proliferation, at concentrations ranging from 17.9 to 27.5 μg/kg MMPB and at concentrations ranging from 50 to 2890 μg/kg MMPB in freshwater mussels laboratory contaminated to MCs.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France; ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- ANSES, Laboratory for Food Safety, F-94701 Maisons-Alfort, France
| | - Amanda J Foss
- GreenWater Laboratories/CyanoLab, 205 Zeagler Drive, Palatka, FL 32177, USA
| | - Thierry Guérin
- ANSES, Strategy and Programmes Department, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687 Reims Cedex, France.
| |
Collapse
|
2
|
Amzil Z, Derrien A, Terre Terrillon A, Savar V, Bertin T, Peyrat M, Duval A, Lhaute K, Arnich N, Hort V, Nicolas M. Five Years Monitoring the Emergence of Unregulated Toxins in Shellfish in France (EMERGTOX 2018-2022). Mar Drugs 2023; 21:435. [PMID: 37623716 PMCID: PMC10456248 DOI: 10.3390/md21080435] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Shellfish accumulate microalgal toxins, which can make them unsafe for human consumption. In France, in accordance with EU regulations, three groups of marine toxins are currently under official monitoring: lipophilic toxins, saxitoxins, and domoic acid. Other unregulated toxin groups are also present in European shellfish, including emerging lipophilic and hydrophilic marine toxins (e.g., pinnatoxins, brevetoxins) and the neurotoxin β-N-methylamino-L-alanine (BMAA). To acquire data on emerging toxins in France, the monitoring program EMERGTOX was set up along the French coasts in 2018. Three new broad-spectrum LC-MS/MS methods were developed to quantify regulated and unregulated lipophilic and hydrophilic toxins and the BMAA group in shellfish (bivalve mollusks and gastropods). A single-laboratory validation of each of these methods was performed. Additionally, these specific, reliable, and sensitive operating procedures allowed the detection of groups of EU unregulated toxins in shellfish samples from French coasts: spirolides (SPX-13-DesMeC, SPX-DesMeD), pinnatoxins (PnTX-G, PnTX-A), gymnodimines (GYM-A), brevetoxins (BTX-2, BTX-3), microcystins (dmMC-RR, MC-RR), anatoxin, cylindrospermopsin and BMAA/DAB. Here, we present essentially the results of the unregulated toxins obtained from the French EMERGTOX monitoring plan during the past five years (2018-2022). Based on our findings, we outline future needs for monitoring to protect consumers from emerging unregulated toxins.
Collapse
Affiliation(s)
- Zouher Amzil
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Amélie Derrien
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | | | - Véronique Savar
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Thomas Bertin
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marion Peyrat
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Audrey Duval
- IFREMER/LITTORAL/LER-BO, F-29900 Concarneau, France; (A.D.); (A.T.T.); (A.D.)
| | - Korian Lhaute
- IFREMER (French Research Institute for Exploitation of the Sea)/PHYTOX/METALG, F-44311 Nantes, France; (V.S.); (K.L.)
| | - Nathalie Arnich
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France;
| | - Vincent Hort
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| | - Marina Nicolas
- Laboratory for Food Safety, Pesticides and Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 94701 Maisons-Alfort, France; (T.B.); (M.P.); (V.H.); (M.N.)
| |
Collapse
|
3
|
Howard MDA, Smith J, Caron DA, Kudela RM, Loftin K, Hayashi K, Fadness R, Fricke S, Kann J, Roethler M, Tatters A, Theroux S. Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwater-to-marine continuum. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:586-604. [PMID: 35748667 PMCID: PMC11539047 DOI: 10.1002/ieam.4651] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Many coastal states throughout the USA have observed negative effects in marine and estuarine environments caused by cyanotoxins produced in inland waterbodies that were transported downstream or produced in the estuaries. Estuaries and other downstream receiving waters now face the dual risk of impacts from harmful algal blooms (HABs) that occur in the coastal ocean as well as those originating in inland watersheds. Despite this risk, most HAB monitoring efforts do not account for hydrological connections in their monitoring strategies and designs. Monitoring efforts in California have revealed the persistent detection of cyanotoxins across the freshwater-to-marine continuum. These studies underscore the importance of inland waters as conduits for the transfer of cyanotoxins to the marine environment and highlight the importance of approaches that can monitor across hydrologically connected waterbodies. A HAB monitoring strategy is presented for the freshwater-to-marine continuum to inform HAB management and mitigation efforts and address the physical and hydrologic challenges encountered when monitoring in these systems. Three main recommendations are presented based on published studies, new datasets, and existing monitoring programs. First, HAB monitoring would benefit from coordinated and cohesive efforts across hydrologically interconnected waterbodies and across organizational and political boundaries and jurisdictions. Second, a combination of sampling modalities would provide the most effective monitoring for HAB toxin dynamics and transport across hydrologically connected waterbodies, from headwater sources to downstream receiving waterbodies. Third, routine monitoring is needed for toxin mixtures at the land-sea interface including algal toxins of marine origins as well as cyanotoxins that are sourced from inland freshwater or produced in estuaries. Case studies from California are presented to illustrate the implementation of these recommendations, but these recommendations can also be applied to inland states or regions where the downstream receiving waterbody is a freshwater lake, reservoir, or river. Integr Environ Assess Manag 2023;19:586-604. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Meredith D. A. Howard
- Central Valley Regional Water Quality Control Board, Rancho Cordova, California, USA
| | - Jayme Smith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - David A. Caron
- University of Southern California, Los Angeles, California, USA
| | | | - Keith Loftin
- U.S. Geological Survey, Kansas Water Science Center, Lawrence, Kansas, USA
| | | | - Rich Fadness
- North Coast Regional Water Quality Control Board, Santa Rosa, California, USA
| | | | - Jacob Kann
- Aquatic Ecosystem Sciences, Ashland, Oregon, USA
| | | | - Avery Tatters
- Avery Tatters, U.S. Environmental Protection Agency Gulf Ecosystem Measurement and Modeling Division Laboratory, Gulf Breeze, Florida, USA
| | - Susanna Theroux
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| |
Collapse
|
4
|
Bouteiller P, Lance E, Guérin T, Biré R. Analysis of Total-Forms of Cyanotoxins Microcystins in Biological Matrices: A Methodological Review. Toxins (Basel) 2022; 14:toxins14080550. [PMID: 36006212 PMCID: PMC9416067 DOI: 10.3390/toxins14080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microcystins (MCs) are cyclic heptapeptidic toxins produced by many cyanobacteria. Microcystins can be accumulated in various matrices in two forms: a free cellular fraction and a covalently protein-bound form. To detect and quantify the concentration of microcystins, a panel of techniques on various matrices (water, sediments, and animal tissues) is available. The analysis of MCs can concern the free or the total (free plus covalently bound) fractions. Free-form analyses of MCs are the most common and easiest to detect, whereas total-form analyses are much less frequent and more complex to achieve. The objective of this review is to summarize the different methods of extraction and analysis that have been developed for total forms. Four extraction methods were identified: MMPB (2-methyl-3-methoxy-4-phenylbutyric acid) method, deconjugation at basic pH, ozonolysis, and laser irradiation desorption. The study of the bibliography on the methods of extraction and analysis of the total forms of MCs showed that the reference method for the subject remains the MMPB method even if alternative methods and, in particular, deconjugation at basic pH, showed results encouraging the continuation of the methodological development on different matrices and on naturally-contaminated samples.
Collapse
Affiliation(s)
- Pierre Bouteiller
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| | - Emilie Lance
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039, CEDEX 2, F-51687 Reims, France
- UMR MNHN/CNRS MCAM, Muséum National d’Histoire Naturelle, F-75005 Paris, France
- Correspondence:
| | - Thierry Guérin
- Strategy and Programs Department, ANSES, F-94701 Maisons-Alfort, France
| | - Ronel Biré
- Laboratory for Food Safety, ANSES, F-94701 Maisons-Alfort, France
| |
Collapse
|
5
|
Lance E, Lepoutre A, Savar V, Robert E, Bormans M, Amzil Z. In situ use of bivalves and passive samplers to reveal water contamination by microcystins along a freshwater-marine continuum in France. WATER RESEARCH 2021; 204:117620. [PMID: 34492364 DOI: 10.1016/j.watres.2021.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria are a potential threat to aquatic ecosystems and human health because of their ability to produce cyanotoxins, such as microcystins (MCs). MCs are regularly monitored in fresh waters, but rarely in estuarine and marine waters despite the possibility of their downstream export. Over a period of two years, we monthly analyzed intracellular (in phytoplankton) and extracellular (dissolved in water) MCs at five stations along a river continuum from a freshwater reservoir with ongoing cyanobacterial blooms to the coast of Brittany, France. MCs were quantified using two integrative samplers placed at each site: solid phase adsorption toxin tracking (SPATT) samplers for collecting extracellular MCs and caged mussels (Anodonta anatina and Mytilus edulis) filter-feeding on MC-producing cyanobacteria. The MC transfer was demonstrated each year during five months at estuarine sites and sporadically at the marine outlet. SPATT samplers integrated extracellular MCs, notably at low environmental concentrations (0.2 µg/L) and with the same variant profile as in water. The mussel A. anatina highlighted the presence of MCs including at intracellular concentrations below 1 µg/L. M. edulis more efficiently revealed the MC transfer at estuarine sites than water samplings. Bivalves showed the same MC variant profile as phytoplankton samples, but with differential accumulation capacities between the variants and the two species. Using SPATT or bivalves can give a more accurate assessment of the contamination level of a freshwater-marine continuum, in which the MC transfer can be episodic. MC content in M. edulis represents a potent threat to human health if considering updated French guideline values, and particularly the total (free and protein-bound) MC content, highlighting the necessity to include cyanotoxins in the monitoring of seafood originating from estuarine areas.
Collapse
Affiliation(s)
- Emilie Lance
- UMR-I 02 SEBIO, BP 1039, REIMS, Cedex 2 51687, France; UMR MNHN/CNRS MCAM, Muséum National d'Histoire Naturelle, Paris 75005, France.
| | | | | | - Elise Robert
- Ifremer/Phycotoxins Laboratory, Nantes F-44311, France
| | - Myriam Bormans
- UMR 6553 Ecobio, CNRS University of Rennes, Rennes F-35000, France
| | - Zouher Amzil
- Ifremer/Phycotoxins Laboratory, Nantes F-44311, France
| |
Collapse
|
6
|
Bioaccumulation and Phytotoxicity and Human Health Risk from Microcystin-LR under Various Treatments: A Pot Study. Toxins (Basel) 2020; 12:toxins12080523. [PMID: 32823916 PMCID: PMC7472386 DOI: 10.3390/toxins12080523] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023] Open
Abstract
Microcystin-LR (MC-LR) is prevalent in water and can be translocated into soil-crop ecosystem via irrigation, overflow (pollution accident), and cyanobacterial manure applications, threatening agricultural production and human health. However, the effects of various input pathways on the bioaccumulation and toxicity of MCs in terrestrial plants have been hardly reported so far. In the present study, pot experiments were performed to compare the bioaccumulation, toxicity, and health risk of MC-LR as well as its degradation in soils among various treatments with the same total amount of added MC-LR (150 μg/kg). The treatments included irrigation with polluted water (IPW), cultivation with polluted soil (CPS), and application of cyanobacterial manure (ACM). Three common leaf-vegetables in southern China were used in the pot experiments, including Ipomoea batatas L., Brassica juncea L., and Brassica alboglabra L. All leaf vegetables could bioaccumulate MC-LR under the three treatments, with much higher MC-LR bioaccumulation, especially root bioconcentration observed in ACM treatment than IPW and CPS treatments. An opposite trend in MC-LR degradation in soils of these treatments indicated that ACM could limit MC-LR degradation in soils and thus promote its bioaccumulation in the vegetables. MC-LR bioaccumulation could cause toxicity to the vegetables, with the highest toxic effects observed in ACM treatment. Similarly, bioaccumulation of MC-LR in the edible parts of the leaf-vegetables posed 1.1~4.8 fold higher human health risks in ACM treatment than in IPW and CPS treatments. The findings of this study highlighted a great concern on applications of cyanobacterial manure.
Collapse
|